Finite element method for drifted space fractional tempered diffusion equation

被引:0
作者
Ayan Chakraborty
B. V. Rathish Kumar
机构
[1] Indian Institutue of Technology Kanpur,Faculty Building, 526
[2] IIT Kanpur,Research Scholar, 555
来源
Journal of Applied Mathematics and Computing | 2019年 / 61卷
关键词
Tempered fractional; Stability; b-spline finite element; Error estimates; Gronwall’s lemma; 65N30; 65J10; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in different field of science have been reconsidered in this terms like diffusion wave equations, Schro¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{o}$$\end{document}dinger equation and so on. In the present paper, a time dependent tempered fractional diffusion equation of order γ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,1)$$\end{document} with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank–Nicolson discretization is used in the time direction. By implementing finite element approximation a priori space–time estimate has been derived and we proved that the convergent order is O(h2+Δt2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(h^2+\varDelta t ^2)$$\end{document} where h is the space step size and Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta t$$\end{document} is the time difference. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.
引用
收藏
页码:117 / 135
页数:18
相关论文
共 46 条
[1]  
Meng Q-J(2015)Preconditioned iterative methods for fractional diffusion models in finance Numer. Methods Partial Differ. Equ. 31 1382-1395
[2]  
Ding D(1973)The pricing of options and corporate liabilities J. Political Econ. 81 637-654
[3]  
Sheng Q(2002)Time fractional diffusion: a discrete random walk approach Nonlinear Dyn. 29 129-143
[4]  
Black F(2010)Tempered stable Lévy motion and transient super-diffusion J. Comput. Appl. Math. 233 2438-2448
[5]  
Scholes M(2007)Fractional diffusion models of option prices in markets with jumps Physica A: Statistical Mechanics and its Applications 374 749-763
[6]  
Gorenflo R(2014)Error analysis of a finite element method for the space-fractional parabolic equation SIAM J. Numer. Anal. 52 2272-2294
[7]  
Baeumer B(2015)A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations J. Comput. Phys. 281 876-895
[8]  
Meerschaert MM(2018)Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates Nonlinear Dyn. 94 1819-1834
[9]  
Cartea Álvaro(2018)Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator Chaos Solitons Fractals 117 117-124
[10]  
del-Castillo-Negrete Diego(2018)Numerical algorithm for solving time? Fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions Numer. Methods Partial Differ. Equ. 34 1577-1597