Dense Families of Selections and Finite-Dimensional Spaces

被引:0
作者
Valentin Gutev
Vesko Valov
机构
[1] University of Natal,School of Mathematical and Statistical Sciences, Faculty of Science
[2] Nipissing University,Department of Computer Science and Mathematics
来源
Set-Valued Analysis | 2003年 / 11卷
关键词
continuous selection; finite-dimensional space; strongly countable-dimensional space; -set;
D O I
暂无
中图分类号
学科分类号
摘要
A characterization of n-dimensional spaces via continuous selections avoiding Zn-sets is given, and a selection theorem for strongly countable-dimensional spaces is established. We apply these results to prove a generalized Ostrand's theorem, and to obtain a new alternative proof of the Hurewicz formula. It is also shown that our selection theorem yields an easy proof of a Michael's result.
引用
收藏
页码:373 / 391
页数:18
相关论文
共 32 条
  • [1] Aló R. A.(1971)Extending linear space-valued functions Math. Ann. 191 79-86
  • [2] Sennott L. I.(2000)-sets and the disjoint Mat. Stud. 13 74-78
  • [3] Banakh T.(1974)-cells property in products of ANR's Math. Z. 136 41-52
  • [4] Trushchak K.(1998)Extensions of zero-sets and of real-valued functions Topology Appl. 86 105-122
  • [5] Blair R. L.(1944)Topologies on the space of continuous functions J. Math. Pures Appl. 23 65-76
  • [6] Hager A. W.(1951)Une généralisation des espaces compacts Canad. J. Math. 3 291-224
  • [7] Di Maio G.(1956)On countably paracompact spaces Proc. Amer. Math. Soc. 7 304-307
  • [8] Holá L'.(2002)On local and uniformly local topological properties Proc. Amer. Math. Soc. 130 233-242
  • [9] Holý D.(1956)Continuous selections and Proc. Japan Acad. 32 388-391
  • [10] McCoy R. A.(1975)-spaces Trans. Amer. Math. Soc. 213 205-216