Semi-explicit methods for isospectral flows

被引:3
作者
Calvo M.P. [1 ]
Iserles A. [2 ]
Zanna A.
机构
[1] Depto. de Matemat. Apl. y Comp., Universidad de Valladolid, Valladolid
[2] Department Appl. Math. Theor. Phys., University of Cambridge, Cambridge
关键词
Theoretical Solution; Real Matrice; Exact Equation; Taylor Method; Isospectral Flow;
D O I
10.1023/A:1016635812817
中图分类号
学科分类号
摘要
In this paper we propose semi-explicit schemes based on Taylor methods for the solution of the isospectral equation L′ = [B, L] for d × d real matrices L, while reproducing the isospectrality of the exact equation. Although the theoretical solution may be symmetric, the proposed schemes usually do not retain symmetry of the underlying flow. We present techniques that allow us to decrease the breakdown in symmetry.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 8 条
[1]  
Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, (1965)
[2]  
Brockett R.W., Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems, Linear Algebra Appl., 146, pp. 79-91, (1991)
[3]  
Calvo M.P., Iserles A., Zanna A., Numerical solution of isospectral flows, Math. Comp., (1995)
[4]  
Chu M.T., A list of matrix flows with applications, Hamiltonian and Gradient Flows, Algorithms and Control, pp. 87-97, (1994)
[5]  
Dieci L., Russell D.R., Van Vleck E.S., Unitary integrators and applications to continuous orthonormalization techniques, SIAM J. Numer. Anal., 31, pp. 261-281, (1994)
[6]  
Iserles A., Zanna A., Qualitative numerical analysis of ordinary differential equations, Lectures in Applied Mathematics, 32, pp. 421-442, (1995)
[7]  
Perelomov A.M., Integrable Systems of Classical Mechanics and Lie Algebras, 1, (1990)
[8]  
Toda M., Theory of Nonlinear Lattices, (1981)