Orbit method and dual topology for certain Lie groups

被引:0
|
作者
Aymen Rahali
Ibtissem Ben Chenni
Zeineb Selmi
机构
[1] Université de Sfax,Faculté des Sciences Sfax
来源
Banach Journal of Mathematical Analysis | 2023年 / 17卷
关键词
Lie groups; Semidirect product; Unitary dual of locally compact group; Fell topology; Orbit method; 22D10; 22E27; 22E45;
D O I
暂无
中图分类号
学科分类号
摘要
Let Hd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}_d$$\end{document} (d∈N∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}^*$$\end{document}) be the (2d+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2d+1)$$\end{document}-dimensional Heisenberg group and let K be a compact connected subgroup of Aut(Hd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Aut}({\mathbb {H}}_d)$$\end{document} acting in the usual way on Hd.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}_d.$$\end{document} In this work, we define the semidirect product G:=K⋉Hd,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\,{:}{=}\,K\ltimes {\mathbb {H}}_d,$$\end{document} for which (K,Hd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K,{\mathbb {H}}_d)$$\end{document} is a Gelfand pair. It is well-known in the representation theory of Lie groups (theory of orbit method) that the unitary dual G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{G}}$$\end{document} of G is in one to one correspondence with the space of admissible coadjoint orbits g‡/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}^\ddagger /G$$\end{document} (see, [19]).  The aim of this paper, is to give a nice description of the topology of g‡/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}^\ddagger /G$$\end{document} and we show that the dual topology of G could be read from the quotient topology of g‡/G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}^\ddagger /G.$$\end{document} More precisely, we prove that the Kirillov–Lipsman’s (orbit mapping) bijection G^≃g‡/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\widehat{G}} \simeq {\mathfrak {g}}^\ddagger /G \end{aligned}$$\end{document}is a homeomorphism. This is a generalization of the previous result obtained in [12].
引用
收藏
相关论文
共 50 条
  • [41] CONTROLLABILITY OF LINEAR SYSTEMS ON LIE GROUPS
    Jouan, P.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2011, 17 (04) : 591 - 616
  • [42] Stabilized plethysms for the classical Lie groups
    Lecouver, Cedric
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 757 - 771
  • [43] Riemannian geometry on contact Lie groups
    André Diatta
    Geometriae Dedicata, 2008, 133 : 83 - 94
  • [44] Coordinated Motion Design on Lie Groups
    Sarlette, Alain
    Bonnabel, Silvere
    Sepulchre, Rodolphe
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (05) : 1047 - 1058
  • [45] Product Mixing in Compact Lie Groups
    Ellis, David
    Kindler, Guy
    Lifshitz, Noam
    Minzer, Dor
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1415 - 1422
  • [46] Piecewise interpolants on matrix Lie groups
    Mastroserio, C
    Politi, T
    APPLIED MATHEMATICS LETTERS, 2001, 14 (03) : 333 - 340
  • [47] Lie groups with flat Gauduchon connections
    Luigi Vezzoni
    Bo Yang
    Fangyang Zheng
    Mathematische Zeitschrift, 2019, 293 : 597 - 608
  • [48] POSITIVITY, MONOTONICITY, AND CONSENSUS ON LIE GROUPS
    Mostajeran, Cyrus
    Sepulchre, Rodolphe
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (03) : 2436 - 2461
  • [49] Regularizing Flows over Lie Groups
    Gur, Yaniv
    Sochen, Nir
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2009, 33 (02) : 195 - 208
  • [50] Supplements on the theory of exponential Lie groups
    Wüstner, M
    JOURNAL OF ALGEBRA, 2003, 265 (01) : 148 - 170