Orbit method and dual topology for certain Lie groups

被引:0
|
作者
Aymen Rahali
Ibtissem Ben Chenni
Zeineb Selmi
机构
[1] Université de Sfax,Faculté des Sciences Sfax
来源
Banach Journal of Mathematical Analysis | 2023年 / 17卷
关键词
Lie groups; Semidirect product; Unitary dual of locally compact group; Fell topology; Orbit method; 22D10; 22E27; 22E45;
D O I
暂无
中图分类号
学科分类号
摘要
Let Hd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}_d$$\end{document} (d∈N∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}^*$$\end{document}) be the (2d+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2d+1)$$\end{document}-dimensional Heisenberg group and let K be a compact connected subgroup of Aut(Hd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Aut}({\mathbb {H}}_d)$$\end{document} acting in the usual way on Hd.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}_d.$$\end{document} In this work, we define the semidirect product G:=K⋉Hd,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\,{:}{=}\,K\ltimes {\mathbb {H}}_d,$$\end{document} for which (K,Hd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K,{\mathbb {H}}_d)$$\end{document} is a Gelfand pair. It is well-known in the representation theory of Lie groups (theory of orbit method) that the unitary dual G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{G}}$$\end{document} of G is in one to one correspondence with the space of admissible coadjoint orbits g‡/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}^\ddagger /G$$\end{document} (see, [19]).  The aim of this paper, is to give a nice description of the topology of g‡/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}^\ddagger /G$$\end{document} and we show that the dual topology of G could be read from the quotient topology of g‡/G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}^\ddagger /G.$$\end{document} More precisely, we prove that the Kirillov–Lipsman’s (orbit mapping) bijection G^≃g‡/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\widehat{G}} \simeq {\mathfrak {g}}^\ddagger /G \end{aligned}$$\end{document}is a homeomorphism. This is a generalization of the previous result obtained in [12].
引用
收藏
相关论文
共 50 条