Some q-Supercongruences from a Quadratic Transformation by Rahman

被引:0
作者
Yudong Liu
Xiaoxia Wang
机构
[1] Shanghai University,Department of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Basic hypergeometric series; supercongruences; -congruences; cyclotomic polynomial; Rahman’s transformation formula; Primary 33D15; Secondary 11A07; 11B65;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by the recent work on q-congruences and a quadratic transformation formula of Rahman, we provide some new q-supercongruences. By taking parameters specialization in one of our results, we obtain a new Ramanujan-type supercongruence, which has the same right-hand side as Van Hamme’s (G.2) supercongruence for p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 1 \pmod 4$$\end{document}. We also formulate some related challenging conjectures on supercongruences and q-supercongruences.
引用
收藏
相关论文
共 37 条
  • [1] Chen X(2021)Hidden Ramanujan J. 54 625-648
  • [2] Chu W(2018)-analogues of Ramanujan-like Kodai Math. 41 512-530
  • [3] Chu W(2019)-series Int. J. Number Theory 15 1919-1968
  • [4] Gorodetsky O(2008)-Series reciprocities and further Ramanujan J. 15 219-234
  • [5] Guillera J(2020)-formula Ramanujan J. 52 123-132
  • [6] Guo VJW(2019)-Congruences, with applications to supercongruences and the cyclic sieving phenomenon J. Difference Equ. Appl. 25 921-929
  • [7] Guo VJW(2020)Hypergeometric identities for 10 extended Ramanujan-type series Israel J. Math. 240 821-835
  • [8] Schlosser MJ(2021)-Analogues of three Ramanujan-type formulas for Constr. Approx. 53 155-200
  • [9] Guo VJW(2018)Proof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomial J. Difference Equ. Appl. 24 1368-1373
  • [10] Schlosser MJ(2018)A family of Integral Transforms Spec. Funct. 29 505-513