Fast Binary Embeddings with Gaussian Circulant Matrices: Improved Bounds

被引:0
|
作者
Sjoerd Dirksen
Alexander Stollenwerk
机构
[1] RWTH Aachen University,Lehrstuhl C für Mathematik (Analysis)
来源
Discrete & Computational Geometry | 2018年 / 60卷
关键词
Binary embeddings; Johnson–Lindenstrauss embeddings; Circulant matrices; 60B20; 68Q87;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of encoding a finite set of vectors into a small number of bits while approximately retaining information on the angular distances between the vectors. By deriving improved variance bounds related to binary Gaussian circulant embeddings, we largely fix a gap in the proof of the best known fast binary embedding method. Our bounds also show that well-spreadness assumptions on the data vectors, which were needed in earlier work on variance bounds, are unnecessary. In addition, we propose a new binary embedding with a faster running time on sparse data.
引用
收藏
页码:599 / 626
页数:27
相关论文
共 9 条
  • [1] Fast Binary Embeddings with Gaussian Circulant Matrices: Improved Bounds
    Dirksen, Sjoerd
    Stollenwerk, Alexander
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (03) : 599 - 626
  • [2] The binary rank of circulant block matrices
    Haviv, Ishay
    Parnas, Michal
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 656 : 277 - 303
  • [3] Determinants of circulant matrices with Gaussian Nickel Fibonacci numbers
    Yilmaz, Fatih
    Ertas, Aybuke
    Akbiyik, Seda Yamac
    FILOMAT, 2023, 37 (25) : 8683 - 8692
  • [4] Tensor rank bounds and explicit QTT representations for the inverses of circulant matrices
    Vysotsky, Lev
    Rakhuba, Maxim
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (03)
  • [5] On generating invertible circulant binary matrices with a prescribed number of ones
    Tomáš Fabšič
    Otokar Grošek
    Karol Nemoga
    Pavol Zajac
    Cryptography and Communications, 2018, 10 : 159 - 175
  • [6] On generating invertible circulant binary matrices with a prescribed number of ones
    Fabsic, Tomas
    Grosek, Otokar
    Nemoga, Karol
    Zajac, Pavol
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (01): : 159 - 175
  • [7] One-bit compressed sensing with partial Gaussian circulant matrices
    Dirksen, Sjoerd
    Jung, Hans Christian
    Rauhut, Holger
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2020, 9 (03) : 601 - 626
  • [8] Salem–Zygmund inequality for locally sub-Gaussian random variables, random trigonometric polynomials, and random circulant matrices
    Gerardo Barrera
    Paulo Manrique
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [9] Salem-Zygmund inequality for locally sub-Gaussian random variables, random trigonometric polynomials, and random circulant matrices
    Barrera, Gerardo
    Manrique, Paulo
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):