Stochastic homogenization of the Landau–Lifshitz–Gilbert equation

被引:0
作者
François Alouges
Anne de Bouard
Benoît Merlet
Léa Nicolas
机构
[1] Institut Polytechnique de Paris,CMAP, Ecole polytechnique, CNRS
[2] Université de Lille,LPP, CNRS UMR 8524
[3] Team RAPSODI,undefined
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2021年 / 9卷
关键词
Micromagnetics; Homogenization; Landau-Lifshitz equations; Harmonic maps;
D O I
暂无
中图分类号
学科分类号
摘要
Following the ideas of Zhikov and Piatnitski (Izv Math 70(1):19–67, 2006), and more precisely the stochastic two-scale convergence, this paper establishes a homogenization theorem in a stochastic setting for two nonlinear equations: the equation of harmonic maps into the sphere and the Landau–Lifschitz–Gilbert equation. These equations have strong nonlinear features, and in general their solutions are not unique.
引用
收藏
页码:789 / 818
页数:29
相关论文
共 32 条
  • [1] Allaire G(1992)Homogenization and two-scale convergence SIAM J. Math. Anal. 23 1482-1518
  • [2] Alouges F(2015)homogenization of composite ferromagnetic materials Proc. R. Soc. A 471 20150365-1084
  • [3] Di Fratta G(1992)On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness Nonlinear Anal. Theory Methods Appl. 18 1071-51
  • [4] Alouges F(1994)Stochastic two-scale convergence in the mean and applications J. Reine Angew. Math. 456 19-74
  • [5] Soyeur A(1989)The weak solutions to the evolution problems of harmonic maps Math. Z. 201 69-404
  • [6] Bourgeat A(1999)Hard/soft magnetic heterostructures: model exchange-spring magnets J. Magn. Magn. Mater. 200 392-97
  • [7] Mikelic A(2015)Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization ESAIM Proc. Surv. 48 80-842
  • [8] Wright S(2011)Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient Adv. Mater. 23 821-169
  • [9] Chen Y(2012)On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework Z. Angew. Math. Phys. 63 145-2307
  • [10] Fullerton EE(2007)Quenched invariance principles for random walks on percolation clusters Proc. R. Soc. A Math. Phys. Eng. Sci. 463 2287-623