The G2 sphere of a 4-manifold

被引:0
作者
R. Albuquerque
I. M. C. Salavessa
机构
[1] Departamento de Matemática da Universidade de Évora and Centro de Investigação em Matemática e Aplicações (CIMA),Centro de Fí sica das Interacções Fundamentais (CFIF)
[2] Instituto Superior Técnico,undefined
来源
Monatshefte für Mathematik | 2009年 / 158卷
关键词
Connections on principal bundles; Sphere bundle; structure; Einstein manifold; Holonomy; 53C25; 53C28; 53C38;
D O I
暂无
中图分类号
学科分类号
摘要
We bring to light a G2 structure existing on the unit sphere tangent bundle SM of any given orientable Riemannian 4-manifold M. The associated 3-form φ is co-calibrated if, and only if, M is an Einstein manifold—a result which leads to new examples of co-calibrated G2 spaces. We hope to be contributing both to the knowledge of special geometries and to the study of 4-manifolds.
引用
收藏
页码:335 / 348
页数:13
相关论文
共 27 条
[1]  
Agricola I.(2006)Solvmanifolds with integrable and non-integrable Diff. Geom. Appl. 25 125-135
[2]  
Chiossi S.(2002) structures Adv. Theor. Math. Phys. 6 1-106
[3]  
Fino A.(2007)-theory dynamics on a manifold of J. Reine Ang. Math. 605 51-93
[4]  
Atiyah M.F.(1966) holonomy C. R. Acad. Sci. Paris 262 127-129
[5]  
Witten E.(1989)Irreducible Duke Math. J. 58 829-850
[6]  
Bobienski M.(1996)(3) geometry in dimension five J. Lond. Math. Soc. 53 407-416
[7]  
Nurowski P.(2002)Sur les variétés riemanniennes à groupe d’holonomie J. Geom. Phys. 44 202-220
[8]  
Bonan E.(1982) ou Spin(7) Ann. Mat. Pura Appl. 132 19-45
[9]  
Bryant R.L.(1997)On the construction of some complete metrics with exceptional holonomy J. Geom. Phys. 23 259-286
[10]  
Salamon S.(2003)Classification of G2-structures J. Geom. Phys. 48 1-11