Komlós properties in Banach lattices

被引:0
|
作者
E. Y. Emelyanov
N. Erkurşun-Özcan
S. G. Gorokhova
机构
[1] Middle East Technical University,Department of Mathematics
[2] Hacettepe University,Department of Mathematics
[3] Sobolev Institute of Mathematics,undefined
来源
Acta Mathematica Hungarica | 2018年 / 155卷
关键词
Banach lattice; −convergence; −convergence; -convergence; Komlós property; Komlós set; space of continuous functions; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Several Komlós like properties in Banach lattices are investigated. We prove that C(K) fails the oo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${oo}$$\end{document}-pre-Komlós property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\in}$$\end{document}U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komlós set C⊆E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\subseteq E_{+}}$$\end{document} which is not uo-Komlós.
引用
收藏
页码:324 / 331
页数:7
相关论文
共 50 条
  • [41] Applications for Unbounded Convergences in Banach Lattices
    Wang, Zhangjun
    Chen, Zili
    FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [42] Order Schauder bases in Banach lattices
    Gumenchuk, Anna
    Karlova, Olena
    Popov, Mikhail
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (02) : 536 - 550
  • [43] Several Norms of Operators on Banach Lattices
    李捷
    陈滋利
    Journal of Southwest Jiaotong University, 2002, (02) : 130 - 133
  • [44] Monotonicity and best approximation in Banach lattices
    Chen, Shu Tao
    He, Xin
    Hudzik, H.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (05) : 785 - 794
  • [45] Unbounded norm convergence in Banach lattices
    Deng, Y.
    O'Brien, M.
    Troitsky, V. G.
    POSITIVITY, 2017, 21 (03) : 963 - 974
  • [46] Approximations of the Korovkin type in Banach lattices
    Halina Wiśniewska
    Marek Wójtowicz
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2015, 109 : 125 - 134
  • [47] Monotonicity and Best Approximation in Banach Lattices
    H.HUDZIK
    Acta Mathematica Sinica(English Series), 2009, 25 (05) : 785 - 794
  • [48] Octahedral norms in free Banach lattices
    Sheldon Dantas
    Gonzalo Martínez-Cervantes
    José David Rodríguez Abellán
    Abraham Rueda Zoca
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [49] Unbounded norm convergence in Banach lattices
    Y. Deng
    M. O’Brien
    V. G. Troitsky
    Positivity, 2017, 21 : 963 - 974
  • [50] Banach lattices of orthogonally additive operators
    Popov, Mikhail
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)