机构:Middle East Technical University,Department of Mathematics
E. Y. Emelyanov
N. Erkurşun-Özcan
论文数: 0引用数: 0
h-index: 0
机构:Middle East Technical University,Department of Mathematics
N. Erkurşun-Özcan
S. G. Gorokhova
论文数: 0引用数: 0
h-index: 0
机构:Middle East Technical University,Department of Mathematics
S. G. Gorokhova
机构:
[1] Middle East Technical University,Department of Mathematics
[2] Hacettepe University,Department of Mathematics
[3] Sobolev Institute of Mathematics,undefined
来源:
Acta Mathematica Hungarica
|
2018年
/
155卷
关键词:
Banach lattice;
−convergence;
−convergence;
-convergence;
Komlós property;
Komlós set;
space of continuous functions;
46B42;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Several Komlós like properties in Banach lattices are investigated. We prove that C(K) fails the oo\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${oo}$$\end{document}-pre-Komlós property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u∈\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\in}$$\end{document}U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komlós set C⊆E+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\subseteq E_{+}}$$\end{document} which is not uo-Komlós.
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Drnovsek, R.
Kandic, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia