Komlós properties in Banach lattices

被引:0
|
作者
E. Y. Emelyanov
N. Erkurşun-Özcan
S. G. Gorokhova
机构
[1] Middle East Technical University,Department of Mathematics
[2] Hacettepe University,Department of Mathematics
[3] Sobolev Institute of Mathematics,undefined
来源
Acta Mathematica Hungarica | 2018年 / 155卷
关键词
Banach lattice; −convergence; −convergence; -convergence; Komlós property; Komlós set; space of continuous functions; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Several Komlós like properties in Banach lattices are investigated. We prove that C(K) fails the oo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${oo}$$\end{document}-pre-Komlós property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\in}$$\end{document}U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komlós set C⊆E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\subseteq E_{+}}$$\end{document} which is not uo-Komlós.
引用
收藏
页码:324 / 331
页数:7
相关论文
共 50 条
  • [21] Weak precompactness in Banach lattices
    Xiang, Bo
    Chen, Jinxi
    Li, Lei
    POSITIVITY, 2022, 26 (01)
  • [22] Martingales in Banach lattices, II
    Hailegebriel E. Gessesse
    Vladimir G. Troitsky
    Positivity, 2011, 15 : 49 - 55
  • [23] Domination problem in Banach lattices
    A. G. Kusraev
    Mathematical Notes, 2016, 100 : 66 - 79
  • [24] LATTICE EMBEDDINGS IN FREE BANACH LATTICES OVER LATTICES
    Aviles, Antonio
    Martinez-Cervantes, Gonzalo
    Rodriguez Abellan, Jose David
    Rueda Zoca, Abraham
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (02): : 495 - 509
  • [25] Measurable bundles of Banach lattices
    Kusraev, A. G.
    POSITIVITY, 2010, 14 (04) : 785 - 799
  • [26] Domination problem in Banach lattices
    Kusraev, A. G.
    MATHEMATICAL NOTES, 2016, 100 (1-2) : 66 - 79
  • [27] A Minimax Theorem in Banach Lattices
    Emma D'Aniello
    Positivity, 2000, 4 : 143 - 160
  • [28] PELCZYNSKI'S PROPERTY (V) ON POSITIVE TENSOR PRODUCTS OF BANACH LATTICES
    Li, Yongjin
    Mate, Apoorva
    Bu, Qingying
    COLLOQUIUM MATHEMATICUM, 2024, 175 (02) : 221 - 235
  • [29] S-decomposable Banach lattices, optimal sequence spaces and interpolation
    Astashkin, Sergey V.
    Nilsson, Per G.
    REVISTA MATEMATICA COMPLUTENSE, 2025,
  • [30] Direct limits in categories of normed vector lattices and Banach lattices
    Ding, Chun
    de Jeu, Marcel
    POSITIVITY, 2023, 27 (03)