Komlós properties in Banach lattices

被引:0
|
作者
E. Y. Emelyanov
N. Erkurşun-Özcan
S. G. Gorokhova
机构
[1] Middle East Technical University,Department of Mathematics
[2] Hacettepe University,Department of Mathematics
[3] Sobolev Institute of Mathematics,undefined
来源
Acta Mathematica Hungarica | 2018年 / 155卷
关键词
Banach lattice; −convergence; −convergence; -convergence; Komlós property; Komlós set; space of continuous functions; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Several Komlós like properties in Banach lattices are investigated. We prove that C(K) fails the oo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${oo}$$\end{document}-pre-Komlós property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\in}$$\end{document}U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komlós set C⊆E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\subseteq E_{+}}$$\end{document} which is not uo-Komlós.
引用
收藏
页码:324 / 331
页数:7
相关论文
共 50 条
  • [1] Komls properties in Banach lattices
    Emelyanov, E. Y.
    Erkursun-Ozcan, N.
    Gorokhova, S. G.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 324 - 331
  • [2] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [3] Separation properties for Carleman operators on Banach lattices
    Feldman, W
    POSITIVITY, 2003, 7 (1-2) : 41 - 45
  • [4] Monotonicity Properties and Order Smoothness in Banach Lattices
    Aleksandrowicz, Karol
    Markowicz, Joanna
    Prus, Stanislaw
    RESULTS IN MATHEMATICS, 2025, 80 (03)
  • [5] Separation properties for Carleman operators on Banach Lattices
    William Feldman
    Positivity, 2003, 7 : 41 - 45
  • [6] Bibasic sequences in Banach lattices
    Taylor, M. A.
    Troitsky, V. G.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (10)
  • [7] The Order Properties of r–compact Operators on Banach Lattices
    Zi Li Chen
    A. W. Wickstead
    Acta Mathematica Sinica, English Series, 2007, 23 : 457 - 466
  • [8] Nonlinear functionals on Banach lattices satisfying disjointness preserving properties
    Feldman, William
    POSITIVITY, 2022, 26 (05)
  • [9] The order properties of r-compact operators on Banach lattices
    Chen, Zi Li
    Wickstead, A. W.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (03) : 457 - 466
  • [10] The Order Properties of r-compact Operators on Banach Lattices
    A.W.WICKSTEAD
    Acta Mathematica Sinica(English Series), 2007, 23 (03) : 457 - 466