Equivariant cohomology and localization for Lie algebroids

被引:0
作者
U. Bruzzo
L. Cirio
P. Rossi
V. Rubtsov
机构
[1] Sezione di Trieste,Scuola Internazionale Superiore di Studi Avanzati, Trieste Istituto Nazionale di Fisica Nucleare
[2] Université d’Angers,Département de Mathématiques ITEP Theoretical Division
来源
Functional Analysis and Its Applications | 2009年 / 43卷
关键词
Lie algebroid; equivariant cohomology; localization formula;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a manifold carrying the action of a Lie group G, and let A be a Lie algebroid on M equipped with a compatible infinitesimal G-action. Using these data, we construct an equivariant cohomology of A and prove a related localization formula for the case of compact G. By way of application, we prove an analog of the Bott formula.
引用
收藏
页码:18 / 29
页数:11
相关论文
共 24 条
[1]  
Bott R.(1967)Vector fields and characteristic numbers Michigan Math. J. 14 231-244
[2]  
Bruzzo U.(2003)Multi-instanton calculus and equivariant cohomology J. High Energy Physics 2003 54-76
[3]  
Fucito F.(2007)Reduction of Courant algebroids and generalized complex structures Adv. Math. 211 726-765
[4]  
Morales J. F.(1978)A remark on the Grothendieck residue map Proc. Amer. Math. Soc. 70 43-48
[5]  
Tanzini A.(1977)Vector fields and Chern numbers Math. Ann. 225 263-273
[6]  
Bursztyn H.(1973)Zeros of vector fields and characteristic numbers J. Differential Geom. 8 25-46
[7]  
Cavalcanti G. R.(1973)Meromorphic vector fields and characteristic numbers Scripta Math. 29 243-251
[8]  
Gualtieri M.(1999)Transverse measures, the modular class and a cohomology pairing for Lie algebroids Quart. J. Math. Oxford, Ser. 2 50 417-436
[9]  
Carrell J. B.(1999)Equivariant Poisson cohomology and a spectral sequence associated with a moment map Internat. J. Math. 10 977-1010
[10]  
Carrell J. B.(1996)Bott’s vanishing theorem for regular Lie algebroids Trans. Amer. Math. Soc. 348 2151-2167