Persistent random walk with exclusion

被引:0
|
作者
Marta Galanti
Duccio Fanelli
Francesco Piazza
机构
[1] Università di Firenze and INFN,Dipartimento di Fisica
[2] Università Di Firenze,Dipartimento di Sistemi e Informatica and INFN
[3] CNRS-UPR 4301 and Université d’Orléans,Centre de Biophysique Moléculaire (CBM)
[4] Département de Physique,undefined
来源
The European Physical Journal B | 2013年 / 86卷
关键词
Statistical and Nonlinear Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Modelling the propagation of a pulse in a dense milieu poses fundamental challenges at the theoretical and applied levels. To this aim, in this paper we generalize the telegraph equation to non-ideal conditions by extending the concept of persistent random walk to account for spatial exclusion effects. This is achieved by introducing an explicit constraint in the hopping rates, that weights the occupancy of the target sites. We derive the mean-field equations, which display nonlinear terms that are important at high density. We compute the evolution of the mean square displacement (MSD) for pulses belonging to a specific class of spatially symmetric initial conditions. The MSD still displays a transition from ballistic to diffusive behaviour. We derive an analytical formula for the effective velocity of the ballistic stage, which is shown to depend in a nontrivial fashion upon both the density (area) and the shape of the initial pulse. After a density-dependent crossover time, nonlinear terms become negligible and normal diffusive behaviour is recovered at long times.
引用
收藏
相关论文
共 50 条
  • [1] Persistent random walk with exclusion
    Galanti, Marta
    Fanelli, Duccio
    Piazza, Francesco
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (11):
  • [2] Thermophoresis as persistent random walk
    Plyukhin, A. V.
    PHYSICS LETTERS A, 2009, 373 (25) : 2122 - 2124
  • [3] Entropy production in a persistent random walk
    Gilbert, T
    Dorfman, JR
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 282 (3-4) : 427 - 449
  • [4] Solution of the persistent, biased random walk
    Garcia-Pelayo, Ricardo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) : 143 - 149
  • [5] Favorite sites of a persistent random walk
    Ghosh, Arka
    Noren, Steven
    Roitershtein, Alexander
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
  • [6] Random Walk on the Simple Symmetric Exclusion Process
    Marcelo R. Hilário
    Daniel Kious
    Augusto Teixeira
    Communications in Mathematical Physics, 2020, 379 : 61 - 101
  • [7] Random walk driven by the simple exclusion process
    Huveneers, Francois
    Simenhaus, Francois
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
  • [8] Random Walk on the Simple Symmetric Exclusion Process
    Hilario, Marcelo R.
    Kious, Daniel
    Teixeira, Augusto
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (01) : 61 - 101
  • [9] Tunable Persistent Random Walk in Swimming Droplets
    Izzet, Adrien
    Moerman, Pepijn G.
    Gross, Preston
    Groenewold, Jan
    Hollingsworth, Andrew D.
    Bibette, Jerome
    Brujic, Jasna
    PHYSICAL REVIEW X, 2020, 10 (02)
  • [10] Dispersal of spores following a persistent random walk
    Bicout, DJ
    Sache, I
    PHYSICAL REVIEW E, 2003, 67 (03): : 1 - 031913