Exploration of Na+,K+-ATPase ion permeation pathways via molecular dynamic simulation and electrostatic analysis

被引:0
作者
J. E. Fonseca
S. Mishra
S. Kaya
R. F. Rakowski
机构
[1] Ohio University,School of EECS, Russ College of Eng. & Tech.
[2] Ohio University,Department of Biological Sciences
来源
Journal of Computational Electronics | 2008年 / 7卷
关键词
Na; ,K; -ATPase; Bionano; Homology modeling; Electrostatics; Molecular dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Biologically-inspired nanodevices can serve as “natural” alternatives to conventional semiconductor devices in many applications from information storage to mechanical rotors. In this work we consider an ATP-powered transmembrane protein, the Na+,K+-ATPase, which has appealing functionality but still lacks an “atomistic” picture capable of elucidating its operation. The vast collection of experimental literature on the Na+,K+-ATPase gives a unique advantage to this protein in developing and validating computational tools. We have performed extensive molecular dynamic simulations of the Na+,K+-ATPase in an accurate biological environment, followed by time-averaged electrostatic analysis, to investigate the ion-binding loci and access/egress pathways that cations may take through the protein as they are transported across the membrane.
引用
收藏
页码:20 / 23
页数:3
相关论文
共 27 条
[1]  
Asenov A.(2003)IEEE Trans Electron Devices 50 1837-undefined
[2]  
van den Heuvel M.(2007)undefined Science 317 333-undefined
[3]  
Dekker C.(2006)undefined J. Comp. Elec. 5 405-undefined
[4]  
Saraniti M.(2004)undefined Nature 432 361-undefined
[5]  
Toyoshima C.(2004)undefined Bioelectrochemistry 63 149-undefined
[6]  
Apell H.J.(2004)undefined Physiology (Bethesda) 19 377-undefined
[7]  
Horisberger J.D.(2005)undefined J. Mol. Graph. Model 24 157-undefined
[8]  
Law R.J.(1993)undefined J. Appl. Cryst. 26 283-undefined
[9]  
Laskowski R.A.(2007)undefined Nature 450 1043-undefined
[10]  
Morth J.P.(2001)undefined Biochem. J. 356 685-undefined