Calabi-Yau orbifolds and torus coverings

被引:0
作者
Amihay Hanany
Vishnu Jejjala
Sanjaye Ramgoolam
Rak-Kyeong Seong
机构
[1] Imperial College London,Theoretical Physics Group, The Blackett Laboratory
[2] University of London,Department of Physics, Queen Mary
[3] Kyoto University,Yukawa Institute for Theoretical Physics
来源
Journal of High Energy Physics | / 2011卷
关键词
D-branes; Differential and Algebraic Geometry; Conformal Field Models in String Theory; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{C}^D} $\end{document}. By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{T}^{D - 1}} $\end{document} with an Abelian orbifold of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} $\end{document}, for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of SD, the group of discrete symmetries of the toric diagram for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{C}^D} $\end{document}. The roots of the polynomial equations correspond to orbifolds of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} $\end{document}, which are invariant under the corresponding subgroup of SD. In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation.
引用
收藏
相关论文
共 33 条
  • [1] Kreuzer M(2002)Complete classification of reflexive polyhedra in four dimensions Adv. Theor. Math. Phys. 4 1209-undefined
  • [2] Skarke H(2010)Sublattice Counting and Orbifolds JHEP 06 051-undefined
  • [3] Hanany A(2010)Counting Orbifolds JHEP 06 010-undefined
  • [4] Orlando D(2011)Symmetries of Abelian Orbifolds JHEP 01 027-undefined
  • [5] Reffert S(1992)The enumeration and symmetry-significant properties of derivative lattices Acta Cryst. A 48 500-undefined
  • [6] Davey J(2006)Brane Dimers and Quiver Gauge Theories JHEP 01 096-undefined
  • [7] Hanany A(2011)Toric CFTs, Permutation Triples and Belyi Pairs JHEP 03 065-undefined
  • [8] Seong R-K(2011)The Beta Ansatz: A Tale of Two Complex Structures JHEP 06 056-undefined
  • [9] Hanany A(2009)Brane Tilings and M2 Branes JHEP 03 012-undefined
  • [10] Seong R-K(1993)Twists and Wilson loops in the string theory of two-dimensional QCD Nucl. Phys. B 403 395-undefined