Bilinear auto-Bäcklund transformations and the hybrid localized wave solutions for the (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document})-dimensional B-type Kadomtsev–Petviashvili equation

被引:0
作者
Hongcai Ma
Nan Su
Aiping Deng
机构
[1] Donghua University,Department of Applied Mathematics
关键词
(; )-dimensional B-type Kadomtsev–Petviashvili; Bilinear auto-Bäcklund transformations; -soliton solutions; Long wave limit method; The hybrid solutions;
D O I
10.1007/s11082-023-05440-1
中图分类号
学科分类号
摘要
In this paper, we research the hybrid solutions and their interaction of the (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document})-dimensional B-type Kadomtsev–Petviashvili equation and bilinear auto-Bäcklund transformations of this equation. We first obtain three different kinds of bilinear auto-Bäcklund transformations of this equation by taking advantage of the definition of Hirota bilinear operator; then, we construct the N-soliton solutions via the Hirota bilinear method and extend the N-soliton solutions to the hybrid solutions of some new localized waves by applying the long wave limit method and the complex conjugate condition technique. Meanwhile, the hybrid solutions are summarized, including seven different combinations of L-order kink waves, M-order lump waves and Q-order breather waves. In addition, these hybrid solutions are graphically depicted for us to understand the dynamical behaviors of these solutions.
引用
收藏
相关论文
共 91 条
  • [1] Alhami R(2022)Extracted different types of optical lumps and breathers to the new generalized stochastic potential-kdv equation via using the cole-hopf transformation and hirota bilinear method Opt. Quantum Electr. 54 553-8
  • [2] Alquran M(2021)Derivation and simulation of the m-lump solutions to two (2+ 1)-dimensional nonlinear equations Phys. Scr. 96 095201-2040
  • [3] Chen S-J(2018)Mixed lump-kink and rogue wave-kink solutions for a (3+ 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics Eur. Phys. J. Plus 133 1-796
  • [4] Lü X(2019)Breather and hybrid solutions for a generalized (3+ 1)-dimensional b-type Kadomtsev-Petviashvili equation for the water waves Nonlinear Dyn. 97 2023-15
  • [5] Li M-G(2020)Long waves in oceanic shallow water: symbolic computation on the bilinear forms and bäcklund transformations for the whitham-broer-kaup system Eur. Phys. J. Plus 135 689-2530
  • [6] Wang F(2019)Dynamics of lump solutions, rogue wave solutions and traveling wave solutions for a (3+ 1)-dimensional VC-BKP equation East Asian J. Appl. Math 9 780-1721
  • [7] Han Cong-Cong(2022)Higher-order mixed localized wave solutions and bilinear auto-Bäcklund transformations for the (3+ 1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation Eur. Phys. J. Plus 137 1-1177
  • [8] Tian B(2022)Hybrid localized wave solutions for a generalized Calogero-Bogoyavlenskii-Konopelchenko-Schiff system in a fluid or plasma Nonlinear Dyn. 108 2513-8636
  • [9] Xiao-Yu W(2022)Bilinear auto-Bäcklund transformations and higher-order breather solutions for the (3+ 1)-dimensional generalized kdv-type equation Nonlinear Dyn. 110 1709-1903
  • [10] Yuan Y-Q(2022)Novel hybrid-type solutions for the (3+ 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation with time-dependent coefficients Nonlinear Dyn. 107 1163-372