Decomposition of the Solution to a Two-Dimensional Singularly Perturbed Convection–Diffusion Equation with Variable Coefficients in a Square and Estimates in Hölder Norms

被引:0
作者
V. B. Andreev
I. G. Belukhina
机构
[1] Faculty of Computational Mathematics and Cybernetics,
[2] Lomonosov Moscow State University,undefined
来源
Computational Mathematics and Mathematical Physics | 2021年 / 61卷
关键词
singularly perturbed equation; convection–diffusion; variable coefficients; two-dimensional problem; a priori estimates; Hölder spaces;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:194 / 204
页数:10
相关论文
共 6 条
  • [1] Andreev V. B.(2017)Hölder estimates for the regular component of the solution to a singularly perturbed convection–diffusion equation Comput. Math. Math. Phys. 57 1935-1972
  • [2] Kellogg R. B.(2005)Corner singularities and boundary layers in a simple convection-diffusion problem J. Differ. Equations 213 81-120
  • [3] Stynes M.(2019)Estimates in Hölder classes for the solution of an inhomogeneous Dirichlet problem for a singularly perturbed homogeneous convection–diffusion equation Comput. Math. Math. Phys. 59 253-265
  • [4] Andreev V. B.(2015)Estimating the smoothness of the regular component of the solution to a one-dimensional singularly perturbed convection–diffusion equation Comput. Math. Math. Phys. 55 19-30
  • [5] Belukhina I. G.(undefined)undefined undefined undefined undefined-undefined
  • [6] Andreev V. B.(undefined)undefined undefined undefined undefined-undefined