The region of values of a system of functionals in the class of typically real functions

被引:0
作者
Goluzina E.G.
机构
关键词
Real Function; Fixed Number; Arbitrary Fixed Number;
D O I
10.1007/BF02358533
中图分类号
学科分类号
摘要
Let TR be the class of functions f(z) = z + ∑n=2∞ cnzn that are regular and typically real in the disk E = {z : |z| < 1}. For this class, the region of values of the system {f(z0), f(r)} for z0 ∈ ℝ, r, ∈ (-1, 1) is studied. The sets Dr = (f(z0) : f ∈ TRf(r) = a} for -1 ≤ r ≤ 1 and Δr = {(c2, c3) : f ∈ TR, - f(-r) = a} for 0 < r ≤ 1 are found, where a ∈ (r(1 + r)-2, r(1 - r)-2) is an arbitrary fixed number. Bibliography: 11 titles. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:958 / 966
页数:8
相关论文
共 11 条
[1]  
Rogosinski W., Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z., 35, pp. 93-121, (1932)
[2]  
Robertson M.S., On the coefficients of typically-real function, Bull. Am. Math. Soc., 41, pp. 565-572, (1935)
[3]  
Goluzin G.M., On typically real functions, Mat. Sb., 27, 69, pp. 201-218, (1950)
[4]  
Alenitsyn Yu. E., On the ranges of systems of coefficients of functions representable by a sum of Stieltjes integrals, Vestn. Leningrad. Gos. Univ., Ser. Mat., Mekh., Astr., 2-7, pp. 25-41, (1962)
[5]  
Akhiezer N., Krein M., On Some Questions of Moment Theory [in Russian], (1938)
[6]  
Andreeva V.A., Lebedev N.A., Stovbun A.V., On the ranges of values of certain systems of functionals in some classes of regular functions, Vestn. Leningr. Gos. Univ., Ser. Mat., Mekh., Astr., 2-7, pp. 8-22, (1961)
[7]  
Goluzina E.G., On the regions of values of certain systems of functionals in the class of typically real functions, Vestn. Leningr. Gos. Univ., Ser. Mat., Mekh., Astr., 2-7, pp. 45-62, (1965)
[8]  
Chernikov V.V., On the ranges of systems of coefficients of bounded functions that are typically real in the disk, Sib. Mat. Zh., 31, 2, pp. 191-196, (1990)
[9]  
Goluzin G.M., Geometric Theory of Functions of A Complex Variable, (1969)
[10]  
Krein M.G., Nudel'Man A.A., Markov's Problem of Moments and Extremal Problems [in Russian], Moscow, (1973)