Exploring 5d BPS Spectra with Exponential Networks

被引:0
作者
Sibasish Banerjee
Pietro Longhi
Mauricio Romo
机构
[1] Max Planck Institute for Mathematics,Riemann center of Geometry and Physics
[2] Leibniz University,Institute for Theoretical Physics
[3] ETH Zurich,Department of Physics and Astronomy
[4] Uppsala University,School of Natural Sciences
[5] Institute for Advanced Study,Yau Mathematical Sciences Center
[6] Tsinghua University,undefined
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop geometric techniques for counting BPS states in five-dimensional gauge theories engineered by M theory on a toric Calabi–Yau threefold. The problem is approached by studying framed 3d–5d wall-crossing in the presence of a single M5 brane wrapping a special Lagrangian submanifold L. The spectrum of 3d–5d BPS states is encoded by the geometry of the manifold of vacua of the 3d–5d system, which further coincides with the mirror curve describing moduli of the Lagrangian brane. The information about the BPS spectrum is extracted from the geometry of the mirror curve by construction of a nonabelianization map for the exponential networks. For the simplest Calabi–Yau, C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^3$$\end{document} we reproduce the count of 5d BPS states and match predictions of 3d tt∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tt^*$$\end{document} geometry for the count of 3d–5d BPS states. We comment on applications of our construction to the study of enumerative invariants of toric Calabi–Yau threefolds.
引用
收藏
页码:4055 / 4162
页数:107
相关论文
共 171 条
[1]  
Gopakumar R(1999)On the gauge theory/geometry correspondence Adv. Theor. Math. Phys. 3 1415-1443
[2]  
Vafa C(2001)On the gauge theory/geometry correspondence AMS/IP Stud. Adv. Math. 23 45-224
[3]  
Gopakumar R(2010)Four-dimensional wall-crossing via three-dimensional field theory Commun. Math. Phys. 299 163-403
[4]  
Vafa C(2013)Wall-crossing, Hitchin systems, and the WKB approximation Adv. Math. 234 239-1227
[5]  
Gaiotto D(2011)Split states, entropy enigmas, holes and halos JHEP 11 129-127
[6]  
Moore GW(2013)BPS quivers and spectra of complete Commun. Math. Phys. 323 1185-287
[7]  
Neitzke A(2014) quantum field theories Adv. Theor. Math. Phys. 18 27-747
[8]  
Gaiotto D(2011) quantum field theories and their BPS quivers JHEP 07 059-28
[9]  
Moore GW(2009)Wall crossing from Boltzmann black hole halos JHEP 03 044-452
[10]  
Neitzke A(2011)D-instantons and twistors JHEP 12 027-644