An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing

被引:146
作者
Sarkar, Tanmoy [1 ,7 ]
Lieberth, Katharina [1 ]
Pavlou, Aristea [1 ]
Frank, Thomas [2 ]
Mailaender, Volker [1 ,3 ]
McCulloch, Iain [4 ,5 ]
Blom, Paul W. M. [1 ]
Torriccelli, Fabrizio [6 ]
Gkoupidenis, Paschalis [1 ]
机构
[1] Max Planck Inst Polymer Res, Mainz, Germany
[2] Max Planck Inst Neurobiol, Martinsried, Germany
[3] Johannes Gutenberg Univ Mainz, Dermatol Clin, Univ Med Ctr, Mainz, Germany
[4] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[5] Univ Oxford, Dept Chem, Oxford, England
[6] Univ Brescia, Dept Informat Engn, Brescia, Italy
[7] Infineon Technol AG, Dresden, Germany
关键词
DOPAMINE; MECHANISMS; EXCITABILITY; BARRIER; SYNAPSE;
D O I
10.1038/s41928-022-00859-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An organic artificial neuron that is based on a compact nonlinear electrochemical element can operate in a liquid and responds to the concentration of biological species in its surroundings, allowing its behaviour to be modulated, for example, by interfacing with the membranes of living cells. The effective mimicry of neurons is key to the development of neuromorphic electronics. However, artificial neurons are not typically capable of operating in biological environments, which limits their ability to interface with biological components and to offer realistic neuronal emulation. Organic artificial neurons based on conventional circuit oscillators have been created, but they require many elements for their implementation. Here we report an organic artificial neuron that is based on a compact nonlinear electrochemical element. The artificial neuron can operate in a liquid and is sensitive to the concentration of biological species (such as dopamine or ions) in its surroundings. The system offers in situ operation and spiking behaviour in biologically relevant environments-including typical physiological and pathological concentration ranges (5-150 mM)-and with ion specificity. Small-amplitude (1-150 mV) electrochemical oscillations and noise in the electrolytic medium shape the neuronal dynamics, whereas changes in ionic (>= 2% over the physiological baseline) and biomolecular (>= 0.1 mM dopamine) concentrations modulate the neuronal excitability. We also create biohybrid interfaces in which an artificial neuron functions synergistically and in real time with epithelial cell biological membranes.
引用
收藏
页码:774 / 783
页数:10
相关论文
共 73 条
[1]   Optimal solid state neurons [J].
Abu-Hassan, Kamal ;
Taylor, Joseph D. ;
Morris, Paul G. ;
Donati, Elisa ;
Bortolotto, Zuner A. ;
Indiveri, Giacomo ;
Paton, Julian F. R. ;
Nogaret, Alain .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Guerin, David ;
Novembre, Christophe ;
Lenfant, Stephane ;
Lmimouni, Kamal ;
Gamrat, Christian ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) :330-337
[3]   Ephaptic coupling of cortical neurons [J].
Anastassiou, Costas A. ;
Perin, Rodrigo ;
Markram, Henry ;
Koch, Christof .
NATURE NEUROSCIENCE, 2011, 14 (02) :217-U304
[4]  
[Anonymous], 2021, Principles of Neural Science
[5]   Extracellular sodium modulates the excitability of cultured hippocampal pyramidal cells [J].
Arakaki, Xianghong ;
Foster, Hailey ;
Su, Lei ;
Do, Huy ;
Wain, Andrew J. ;
Fonteh, Alfred N. ;
Zhou, Feimeng ;
Harrington, Michael G. .
BRAIN RESEARCH, 2011, 1401 :85-94
[6]   Steady-state and transient behavior of organic electrochemical transistors [J].
Bernards, Daniel A. ;
Malliaras, George G. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) :3538-3544
[7]   Fifty years of dopamine research [J].
Bjorklund, Anders ;
Dunnett, Stephen B. .
TRENDS IN NEUROSCIENCES, 2007, 30 (05) :185-187
[8]   The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes [J].
Buzsaki, Gyoergy ;
Anastassiou, Costas A. ;
Koch, Christof .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (06) :407-420
[9]   Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification [J].
Cucchi, Matteo ;
Gruener, Christopher ;
Petrauskas, Lautaro ;
Steiner, Peter ;
Tseng, Hsin ;
Fischer, Axel ;
Penkovsky, Bogdan ;
Matthus, Christian ;
Birkholz, Peter ;
Kleemann, Hans ;
Leo, Karl .
SCIENCE ADVANCES, 2021, 7 (34)
[10]   Electrolyte-gated organic synapse transistor interfaced with neurons [J].
Desbief, Simon ;
di Lauro, Michele ;
Casalini, Stefano ;
Guerin, David ;
Tortorella, Silvia ;
Barbalinardo, Marianna ;
Kyndiah, Adrica ;
Murgia, Mauro ;
Cramer, Tobias ;
Biscarini, Fabio ;
Vuillaume, Dominique .
ORGANIC ELECTRONICS, 2016, 38 :21-28