Weakly monotone finite volume scheme for parabolic equations in strongly anisotropic media

被引:0
作者
Moha Aberrah
El Houssaine Quenjel
Patrick Perré
Mohamed Rhoudaf
机构
[1] Moulay Ismaïl University,Faculty of Sciences
[2] Université Paris-Saclay,CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB)
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Finite volumes; Monotonicity; Parabolic equation; Anisotropy; Mass transfer; Wood; 74S10; 35K55; 35B50; 80A20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose an original idea consisting of preserving the weak monotonicity of the CVFE scheme, or generally for schemes written under the two-point like formulation. The setting handles highly anisotropic and heterogeneous diffusion tensors. The key idea is to insert a nonlinear correcting coefficient whose objective is to eliminate the anti-diffusive fluxes. This modification works on the same stencil as the initial discretization. The obtained scheme remains stable in the sense that the solution respects its physical ranges and enables the energy estimates. The existence of discrete solutions is also valid. The numerical section highlights the accuracy, the robustness and the efficiency of the novel scheme compared to the standard CVFE methodology. An application of the developed weakly monotone finite volume scheme to the simulation of mass transfer in hygroscopic media is conducted, with a specific focus on mass diffusion within wood.
引用
收藏
页码:3289 / 3316
页数:27
相关论文
共 89 条
  • [1] Aavatsmark I(1996)Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media J. Comput. Phys. 127 2-14
  • [2] Barkve T(2007)Convergence of a symmetric MPFA method on quadrilateral grids Comput. Geosci. 11 333-345
  • [3] Bøe Ø(2002)Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media Comput. Methods Appl. Mech. Eng. 191 5265-5286
  • [4] Mannseth T(1983)Quasilinear elliptic-parabolic differential equations Math. Z. 183 311-341
  • [5] Aavatsmark I(2007)Discrete duality finite volume schemes for Leray-lions-type elliptic problems on general 2D meshes Numer. Methods Partial Differ. Equ. Int. J. 23 145-195
  • [6] Eigestad G(2008)Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities SIAM J. Numer. Anal. 46 3032-3070
  • [7] Klausen R(2013)Convergence of a vertex centred discretization of two-phase Darcy flows on general meshes Int. J. Finite Vol. 10 1-37
  • [8] Wheeler M(2020)Vertex approximate gradient discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media J. Comput. Phys. 409 641-646
  • [9] Yotov I(2004)Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes C. R. Math. 338 387-417
  • [10] Afif M(2013)Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations Numer. Math. 125 549-580