Gaps in scl for Amalgamated Free Products and RAAGs

被引:0
作者
Nicolaus Heuer
机构
[1] University of Oxford,Department of Mathematics
来源
Geometric and Functional Analysis | 2019年 / 29卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop a new criterion to tell if a group G has the maximal gap of 1/2 in stable commutator length (scl). For amalgamated free products G=A⋆CB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G = A \star_C B}$$\end{document} we show that every element g in the commutator subgroup of G which does not conjugate into A or B satisfies scl(g)≥1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm scl}(g) \geq 1/2}$$\end{document}, provided that C embeds as a left relatively convex subgroup in both A and B. We deduce from this that every non-trivial element g in the commutator subgroup of a right-angled Artin group G satisfies scl(g)≥1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm scl}(g) \geq 1/2}$$\end{document}. This bound is sharp and is inherited by all fundamental groups of special cube complexes. We prove these statements by constructing explicit extremal homogeneous quasimorphisms ϕ¯:G→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\phi} : G \to \mathbb{R}}$$\end{document} satisfying ϕ¯(g)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\phi}(g) \geq 1}$$\end{document} and D(ϕ¯)≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D(\bar{\phi})\leq 1}$$\end{document}. Such maps were previously unknown, even for non-abelian free groups. For these quasimorphisms ϕ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\phi}}$$\end{document} there is an action ρ:G→Homeo+(S1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho : G \to \mathrm{Homeo}^+(S^1)}$$\end{document} on the circle such that [δ1ϕ¯]=ρ∗eubR∈Hb2(G,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\delta^1 \bar{\phi}]=\rho^*{\rm eu}^\mathbb{R}_b \in {\rm H}^2_b(G,\mathbb{R})}$$\end{document}, for eubR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm eu}^\mathbb{R}_b}$$\end{document} the real bounded Euler class.
引用
收藏
页码:198 / 237
页数:39
相关论文
共 27 条
[1]  
Bestvina Mladen(2016)Stable commutator length on mapping class groups Ann. Inst. Fourier (Grenoble) 66 871-898
[2]  
Bromberg Ken(2016)A note on semi-conjugacy for circle actions Enseign. Math. 62 317-360
[3]  
Fujiwara Koji(2013)On the subgroups of right-angled Artin groups and mapping class groups Math. Res. Lett. 20 203-212
[4]  
Bucher Michelle(2009)Faces of the scl norm ball Geom. Topol. 13 1313-1336
[5]  
Frigerio Roberto(2010)Stable commutator length in word-hyperbolic groups Groups Geom. Dyn. 4 59-90
[6]  
Hartnick Tobias(2016)Stable commutator length in Baumslag-Solitar groups and quasimorphisms for tree actions Trans. Amer. Math. Soc. 368 4751-4785
[7]  
Bridson Martin R(2018)Spectral gap of scl in free products Proc. Amer. Math. Soc. 146 3143-3151
[8]  
Calegari Danny(2011)Isometric endomorphisms of free groups New York J. Math. 17 713-743
[9]  
Calegari Danny(2011)Ziggurats and rotation numbers J. Mod. Dyn. 5 711-746
[10]  
Fujiwara Koji(1991)The genus problem for one-relator products of locally indicable groups Math. Z. 208 225-237