Bootstrap inference in local polynomial regression of time series

被引:0
|
作者
Maria Lucia Parrella
Cosimo Vitale
机构
[1] Università di Salerno,Dipartimento di Scienze Economiche e Statistiche
来源
Statistical Methods and Applications | 2007年 / 16卷
关键词
Nonparametric regression; Local polynomial fitting; Local bootstrap; -mixing processes;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the inferential aspect of the nonparametric estimation of a conditional function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g({\bf x};\phi)={\mathop{\mathbb E}\nolimits}[\phi(X_{t})|{\bf X}_{t,m}]$$\end{document}, where Xt,m represents the vector containing the m conditioning lagged values of the series. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} is an arbitrary measurable function. The local polynomial estimator of order p is used for the estimation of the function g, and of its partial derivatives up to a total order p. We consider α-mixing processes, and we propose the use of a particular resampling method, the local polynomial bootstrap, for the approximation of the sampling distribution of the estimator. After analyzing the consistency of the proposed method, we present a simulation study which gives evidence of its finite sample behaviour.
引用
收藏
页码:117 / 139
页数:22
相关论文
共 50 条
  • [1] Bootstrap inference in local polynomial regression of time series
    Parrella, Maria Lucia
    Vitale, Cosimo
    STATISTICAL METHODS AND APPLICATIONS, 2007, 16 (01): : 117 - 139
  • [2] Local block bootstrap inference for trending time series
    Dowla, Arif
    Paparoditis, Efstathios
    Politis, Dimitris N.
    METRIKA, 2013, 76 (06) : 733 - 764
  • [3] Local block bootstrap inference for trending time series
    Arif Dowla
    Efstathios Paparoditis
    Dimitris N. Politis
    Metrika, 2013, 76 : 733 - 764
  • [4] Smoothing time series with local polynomial regression on time
    Ledolter, Johannes
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (06) : 959 - 971
  • [5] Improved local polynomial estimation in time series regression
    Geller, Juliane
    Neumann, Michael H.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (01) : 1 - 27
  • [6] Multivariate regression estimation - Local polynomial fitting for time series
    Masry, E
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 65 (01) : 81 - 101
  • [7] Multivariate regression estimation: Local polynomial fitting for time series
    Masry, E
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3575 - 3581
  • [8] Prediction of the chaotic time series using multivariate local polynomial regression
    Zhou Yong-Dao
    Ma Hong
    Lue Wang-Yong
    Wang Hui-Qi
    ACTA PHYSICA SINICA, 2007, 56 (12) : 6809 - 6814
  • [9] LOCAL POLYNOMIAL AND PENALIZED TRIGONOMETRIC SERIES REGRESSION
    Huang, Li-Shan
    Chan, Kung-Sik
    STATISTICA SINICA, 2014, 24 (03) : 1215 - 1238
  • [10] A SMOOTH BLOCK BOOTSTRAP FOR QUANTILE REGRESSION WITH TIME SERIES
    Gregory, Karl B.
    Lahiri, Soumendra N.
    Nordman, Daniel J.
    ANNALS OF STATISTICS, 2018, 46 (03): : 1138 - 1166