Positive solutions of higher-order Sturm-Liouville boundary value problems with derivative-dependent nonlinear terms

被引:0
作者
Ravi P Agarwal
Patricia JY Wong
机构
[1] Texas A&M University - Kingsville,Department of Mathematics
[2] King Abdulaziz University,Department of Mathematics, Faculty of Science
[3] Nanyang Technological University,School of Electrical and Electronic Engineering
来源
Boundary Value Problems | / 2016卷
关键词
positive solutions; Sturm-Liouville boundary value problems; derivative-dependent; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Sturm-Liouville boundary value problem {y(m)(t)+F(t,y(t),y′(t),…,y(q)(t))=0,t∈[0,1],y(k)(0)=0,0≤k≤m−3,ζy(m−2)(0)−θy(m−1)(0)=0,ρy(m−2)(1)+δy(m−1)(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left \{ \textstyle\begin{array}{@{}l} y^{(m)}(t)+ F (t,y(t),y'(t),\ldots,y^{(q)}(t) )=0, \quad t\in[0,1],\\ y^{(k)}(0)=0,\quad 0\leq k\leq m-3, \\ \zeta y^{(m-2)}(0)-\theta y^{(m-1)}(0)=0,\qquad \rho y^{(m-2)}(1)+\delta y^{(m-1)}(1)=0, \end{array}\displaystyle \right . $$\end{document} where m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m\geq3$\end{document} and 1≤q≤m−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq q\leq m-2$\end{document}. We note that the nonlinear term F involves derivatives. This makes the problem challenging, and such cases are seldom investigated in the literature. In this paper we develop a new technique to obtain existence criteria for one or multiple positive solutions of the boundary value problem. Several examples with known positive solutions are presented to dwell upon the usefulness of the results obtained.
引用
收藏
相关论文
共 70 条
[1]  
Aronson D(1982)Stabilization of solutions of a degenerate nonlinear diffusion problem Nonlinear Anal. 6 1001-1022
[2]  
Crandall MG(1989)An unexpected stability result of the near-extinction diffusion flame for non-unity Lewis numbers Q. J. Mech. Appl. Math. 42 143-158
[3]  
Peletier LA(1971)Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory SIAM J. Appl. Math. 20 1-13
[4]  
Choi YS(1980)On the structure of solutions of an equation in catalysis theory when a parameter is large J. Differ. Equ. 37 404-437
[5]  
Ludford GS(1969)On the nonlinear equations Bull. Am. Math. Soc. 75 132-135
[6]  
Cohen DS(1959) and Usp. Mat. Nauk 14 87-158
[7]  
Dancer EN(1974)Some problems in the theory of quasilinear equations SIAM J. Appl. Math. 26 687-716
[8]  
Fujita H(1995)Solutions of differential equations arising in chemical reactor processes Rend. Semin. Mat. Fis. Milano 55 249-264
[9]  
Gel’fand IM(1991)Existence of solutions for singular boundary value problems for higher order differential equations Nonlinear Anal. 17 1-10
[10]  
Parter S(1989)Singular nonlinear boundary value problems for higher order ordinary differential equations J. Differ. Equ. 79 62-78