Learning contextual superpixel similarity for consistent image segmentation

被引:1
作者
Mahaman Sani Chaibou
Pierre-Henri Conze
Karim Kalti
Mohamed Ali Mahjoub
Basel Solaiman
机构
[1] LATIS - Laboratory of Advanced Technology and Intelligent Systems,Université de Sousse, Ecole Nationale d’Ingénieurs de Sousse
[2] Université de Sousse,Institut Supérieur d’Informatique et des Techniques de Communication
[3] IMT Atlantique,Faculté des sciences de Monatir
[4] Technopôle Brest-Iroise,undefined
[5] LaTIM UMR 1101,undefined
[6] Inserm,undefined
[7] IBRBS,undefined
[8] Université de Monastir,undefined
来源
Multimedia Tools and Applications | 2020年 / 79卷
关键词
Context description; Superpixels similarity; Machine learning; Random forests; Image segmentation; Region-growing;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the problem of image segmentation by iterative region aggregations starting from an initial superpixel decomposition. Classical approaches for this task compute superpixel similarity using distance measures between superpixel descriptor vectors. This usually poses the well-known problem of the semantic gap and fails to properly aggregate visually non-homogeneous superpixels that belong to the same high-level object. This work proposes to use random forests to learn the merging probability between adjacent superpixels in order to overcome the aforementioned issues. Compared to existing works, this approach learns the fusion rules without explicit similarity measure computation. We also introduce a new superpixel context descriptor to strengthen the learned characteristics towards better similarity prediction. Image segmentation is then achieved by iteratively merging the most similar superpixel pairs selected using a similarity weighting objective function. Experimental results of our approach on four datasets including DAVIS 2017 and ISIC 2018 show its potential compared to state-of-the-art approaches.
引用
收藏
页码:2601 / 2627
页数:26
相关论文
共 89 条
[1]  
Achanta R(2012)Slic superpixels compared to state-of-the-art superpixel methods IEEE Transactions on Pattern Analysis and Machine Intelligence 34 2274-2282
[2]  
Shaji A(1997)Shape quantization and recognition with randomized trees Neural Computation 9 1545-1588
[3]  
Smith K(2012)Random search for hyper-parameter optimization J Mach Learn Res 13 281-305
[4]  
Lucchi A(2019)Unsupervised video object segmentation using conditional random fields Image and Video Processing 13 9-16
[5]  
Fua P(2019)Spatio-temporal saliency detection using objectness measure Signal, Image and Video Processing 13 1055-1062
[6]  
Süsstrunk S(2001)Random forests Mach learn 45 5-32
[7]  
Amit Y(2017)Adaptive strategy for superpixel-based region-growing image segmentation J Electron Imaging 26 061605-3336
[8]  
Geman D(2018)Bilevel feature learning for video saliency detection IEEE Trans Multimedia 20 3324-3170
[9]  
Bergstra J(2017)Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion IEEE Trans Image Process 26 3156-233
[10]  
Bengio Y(2017)Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced ct scans International Journal of Computer Assisted Radiology and Surgery 12 223-1256