Constraints on the equation of state from the stability condition of neutron stars

被引:0
作者
P. S. Koliogiannis
C. C. Moustakidis
机构
[1] Aristotle University of Thessaloniki,Department of Theoretical Physics
[2] Eberhard-Karls University of Tuebingen,Theoretical Astrophysics, IAAT
来源
Astrophysics and Space Science | 2019年 / 364卷
关键词
Neutron stars; Nuclear equation of state; Stability condition; Adiabatic index;
D O I
暂无
中图分类号
学科分类号
摘要
The stellar equilibrium and collapse, including mainly white dwarfs, neutron stars and super massive stars, is an interplay between general relativistic effects and the equation of state of nuclear matter. In the present work, we use the Chandrasekhar criterion of stellar instability by employing a large number of realistic equations of state (EoSs) of neutron star matter. We mainly focus on the critical point of transition from stable to unstable configuration. This point corresponds to the maximum neutron star mass configuration. We calculate, in each case, the resulting compactness parameter, β=GM/c2R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta =GM/c^{2}R$\end{document}, and the corresponding effective adiabatic index, γcr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma _{\mathrm{cr}}$\end{document}. We find that there is a model-independent relation between γcr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma _{ \mathrm{cr}}$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta $\end{document}. This statement is strongly supported by the large number of EoSs, and it is also corroborated by using analytical solutions of the Einstein field equations. In addition, we present and discuss the relation between the maximum rotation rate and the adiabatic index close to the instability limit. Accurate observational measurements of the upper bound of the neutron star mass and the corresponding radius, in correlation with present predictions, may help to impose constraints on the high density part of the neutron star equation of state.
引用
收藏
相关论文
共 173 条
[1]  
Abbott B.P.(2017)undefined Phys. Rev. Lett. 119 848-72
[2]  
Abbott B.P.(2017)undefined Astrophys. J. 12 1804-undefined
[3]  
Akmal A.(1998)undefined Phys. Rev. C 58 1377-undefined
[4]  
Pandharipande V.R.(2018)undefined Mon. Not. R. Astron. Soc. 478 505-undefined
[5]  
Ravenhall D.G.(2013)undefined Science 340 637-undefined
[6]  
Alsing J.(1966)undefined Astrophys. J. 145 649-undefined
[7]  
Silva H.O.(2017)undefined Astrophys. J. Lett. 850 3056-undefined
[8]  
Berti E.(1973)undefined Astrophys. J. 183 646-undefined
[9]  
Antoniadis J.(1973)undefined Astrophys. J. 183 1027-undefined
[10]  
Freire P.C.(2018)undefined Astron. Astrophys. 609 310-undefined