A bipartite-cylindrical drawing of the complete bipartite graph Km,n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K_{m,n} $$\end{document} is a drawing on the surface of a cylinder, where the vertices are placed on the boundaries of the cylinder, one vertex-partition per boundary, and the edges do not cross the boundaries. The bipartite-cylindrical crossing number of Km,n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K_{m,n}$$\end{document}, denoted by cr⊚(Km,n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ cr_\circledcirc (K_{m,n}) $$\end{document}, is the minimum number of crossings among all bipartite-cylindrical drawings of Km,n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K_{m,n} $$\end{document}. This problem is equivalent to minimizing the number of crossings in drawings of Km,n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K_{m,n} $$\end{document} in the plane where each of the vertex classes in the bipartition is placed on a circle and the edges do not cross the two circles. We determine cr⊚(Km,n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ cr_\circledcirc (K_{m,n}) $$\end{document} and give explicit constructions that achieve this number. This in turn gives an alternative proof to the Harary–Hill Conjecture restricted to a subclass of cylindrical drawings of the complete graph.