Long-time behavior of a semilinear wave equation with memory

被引:0
作者
Baowei Feng
Maurício L Pelicer
Doherty Andrade
机构
[1] Southwestern University of Finance and Economics,College of Economic Mathematics
[2] State University of Maringá,Department of Sciences, Regional Campus of Goioerê
[3] State University of Maringá,Department of Mathematics
来源
Boundary Value Problems | / 2016卷
关键词
wave equation; global attractor; memory; viscoelasticity; 35L71; 35B41; 74D99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the long-time dynamics of the semilinear viscoelastic equation utt−Δutt−Δu+∫0∞μ(s)Δu(t−s)ds+f(u)=h,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt} - \Delta u_{tt} - \Delta u + \int_{0}^{\infty} \mu(s) \Delta u(t-s) \,ds + f(u) = h , $$\end{document} defined in a bounded domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{3}$\end{document} with Dirichlet boundary condition. The functions f=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f=f(u)$\end{document} and h=h(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h=h(x)$\end{document} represent forcing terms and the kernel function μ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu\ge0$\end{document} is assumed to decay exponentially. Then, by exploring only the dissipation given by the memory term, we establish the existence of a global attractor to the corresponding dynamical system.
引用
收藏
相关论文
共 37 条
  • [1] Cavalcanti MM(2001)Existence and uniform decay for a nonlinear viscoelastic equation with strong damping Math. Methods Appl. Sci. 24 1043-1053
  • [2] Domingos Cavalcanti VN(2009)Global existence and uniform decay for a nonlinear viscoelastic equation with damping Nonlinear Anal. 70 3090-3098
  • [3] Ferreira J(2009)Exponential decay for a quasilinear viscoelastic equation Math. Nachr. 282 1443-1450
  • [4] Han X(2013)General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms J. Math. Anal. Appl. 406 34-48
  • [5] Wang M(2013)Long-time behavior of a quasilinear viscoelastic equation with past history J. Differ. Equ. 254 4066-4087
  • [6] Messaoudi SA(2014)Uniform attractors for a non-autonomous viscoelastic equation with a past history Nonlinear Anal. 101 1-15
  • [7] Tatar N-E(2011)Global attractor and decay estimates of solutions to a class of nonlinear evolution equations Math. Methods Appl. Sci. 34 497-508
  • [8] Wu S-T(2014)A well posedness result for nonlinear viscoelastic equations with memory Nonlinear Anal. 94 206-216
  • [9] Araújo RO(2016)Attractors for wave equations with degenerate memory J. Differ. Equ. 260 56-83
  • [10] Ma TF(2008)Attractors for semi-linear equations of viscoelasticity with very low dissipation Rocky Mt. J. Math. 38 1117-1138