Detection of some elements in the stable homotopy groups of spheres

被引:0
作者
Xiugui Liu
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
来源
Chinese Annals of Mathematics, Series B | 2008年 / 29卷
关键词
Stable homotopy groups of spheres; Adams spectral sequence; May spectral sequence; Steenrod algebra; 55Q45;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres π*S is one of the central problems in homotopy theory. This paper constructs a new nontrivial family of homotopy elements in the stable homotopy groups of spheres \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pi _{p^n q + 2pq + q - 3} S $$\end{document} which is of order p and is represented by k0hn ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ext_A^{3,p^n q + 2pq + q} $$\end{document}(ℤp, ℤp) in the Adams spectral sequence, where p ≥ 5 is an odd prime, n ≥ 3 and q = 2(p − 1). In the course of the proof, a new family of homotopy elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pi _{p^n q + (p + 1)q - 1} V(1) $$\end{document} which is represented by β*i′*i*(hn) ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ext_A^{2,p^n q + (p + 1)q + 1} $$\end{document}(H*V(1), ℤp) in the Adams sequence is detected.
引用
收藏
页码:291 / 316
页数:25
相关论文
共 23 条
[1]  
Liulevicius A.(1962)The factorizations of cyclic reduced powers by secondary cohomology operations Mem. Amer. Math. Soc. 42 112-205
[2]  
Cohen R.(1981)Odd primary families in stable homotopy theory Mem. Amer. Math. Soc. 242 vii+92-106
[3]  
Lin J.(1998)A new family of filtration seven in the stable homotopy of spheres Hiroshima Math. J. 28 183-492
[4]  
Zheng Q.(2002)New families in the stable homotopy of spheres revisited Acta Math. Sin. Engl. Ser. 18 95-841
[5]  
Lin J.(2001)A new family of filtration three in the stable homotopy of spheres Hiroshima Math. J. 31 477-201
[6]  
Lin J.(2004)A nontrivial product in the stable homotopy groups of spheres Sci. China Ser. A 47 831-801
[7]  
Liu X.(2006)A new family of filtration Acta Math. Sci. Ser. B (Engl. Ed.) 26 193-340
[8]  
Liu X.(2006) + 6 in the stable homotopy groups of spheres J. Korean Math. Soc. 43 783-392
[9]  
Liu X.(2006)Non-triviality of two homotopy elements in Chin. Ann. Math. 27B 329-1032
[10]  
Liu X.(2007), Acta Math. Sin. Engl. Ser. 23 385-99