On the Coefficient Inequality for a Subclass of Strongly Starlike Mappings of Order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} in Several Complex Variables

被引:1
作者
Qinghua Xu
Xuan Xu
机构
[1] Zhejiang University of Science and Technology,School of Science
[2] Jiangxi Normal University,College of Mathematics and Information Science
关键词
Fekete–Szegö problem; strongly starlike mappings of order ; sharp coefficient bound; Primary 32H02; Secondary 30C45;
D O I
10.1007/s00025-018-0837-2
中图分类号
学科分类号
摘要
Let SSα∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {SS}_\alpha ^*$$\end{document} be the familiar class of strongly starlike functions of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} in the unit disk. Xu et al. (Results Math 72:343–357, 2017) proved that for a function f(z)=z+∑k=2∞akzk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=z+\sum \nolimits _{k=2}^\infty a_kz^k$$\end{document} in the class SSα∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {SS}_\alpha ^*$$\end{document}, then |a3-λa22|≤αmax{1,α|3-4λ|},λ∈C.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |a_3-\lambda a_2^2|\le \alpha \max \{1,\ \alpha |3-4\lambda |\}, \quad \lambda \in \mathbb {C}. \end{aligned}$$\end{document}In this paper, we investigate the corresponding problem for the subclass of strongly starlike mappings of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} defined on the unit ball in a complex Banach space, on the unit polydisk in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document} and the bounded starlike circular domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document}, respectively.
引用
收藏
相关论文
共 39 条
[1]  
Fekete M(1933)Eine Bemerkunguber ungerade schlichte Funktionen J. Lond. Math. Soc. 8 85-89
[2]  
Szegö G(2002)Parametric representation of univalent mappings in several complex variables Can. J. Math. 54 324-351
[3]  
Graham I(2003)Loewner chains and parametric representation in several complex variables J. Math. Anal. Appl. 281 425-438
[4]  
Hamada H(2014)Growth, distortion and coefficient bounds for Carathéodory families in J. Math. Anal. Appl. 416 449-469
[5]  
Kohr G(2006) and complex Banach spaces J. Math. Anal. Appl. 317 302-319
[6]  
Graham I(2008)Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation Chin. Ann. Math. 29 B 353-368
[7]  
Kohr G(2001)Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables Glas. Mat. Ser. 36 39-48
[8]  
Kohr M(1998)Starlike mappings of order Complex Var. 36 261-284
[9]  
Graham I(1998) on the unit ball in complex Banach spaces Chin. Ann. Math. 19B 401-408
[10]  
Hamada H(2000)On some best bounds for coefficients of several subclasses of biholomorphic mappings in Chin. Q. J. Math. 15 28-33