Numerical time perturbation and resummation methods for nonlinear ODE

被引:1
|
作者
C. Tayeh
G. Girault
Y. Guevel
J. M. Cadou
机构
[1] Université Bretagne Sud,UMR CNRS 6027, IRDL
[2] Centre de Recherche des Écoles de Saint-Cyr Coëtquidan,undefined
[3] Écoles de Coëtquidan,undefined
来源
Nonlinear Dynamics | 2021年 / 103卷
关键词
Time perturbation methods; Numerical resummation; Borel–Laplace; Inverse factorial series; Nonlinear ODE;
D O I
暂无
中图分类号
学科分类号
摘要
In this research work, numerical time perturbation methods are applied on nonlinear ODE. Solutions are sought in the form of power series using time as the perturbation parameter. This time integration approach with continuation procedures allows to obtain analytical continuous approximated solutions. Asymptotic Numerical Method and new resummations techniques of divergent series namely Borel–Padé–Laplace and Inverse Factorial series are studied. A comparison with classic integration scheme is presented in order to evaluate the robustness and the effectiveness of these algorithms. Full details are given regarding first- and second-order derivative of resummation techniques.
引用
收藏
页码:617 / 642
页数:25
相关论文
共 50 条
  • [1] Numerical time perturbation and resummation methods for nonlinear ODE
    Tayeh, C.
    Girault, G.
    Guevel, Y.
    Cadou, J. M.
    NONLINEAR DYNAMICS, 2021, 103 (01) : 617 - 642
  • [2] Resummation methods for analyzing time series
    Gluzman, S
    Yukalov, VI
    MODERN PHYSICS LETTERS B, 1998, 12 (2-3): : 61 - 74
  • [3] Singular perturbation methods for nonlinear dynamic systems with time delays
    Hu, H. Y.
    Wang, Z. H.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 13 - 27
  • [4] Perturbation methods for nonlinear autonomous discrete-time dynamical systems
    Universita degli Studi di L'Aquila, L'Aquila, Italy
    Nonlinear Dyn, 4 (317-331):
  • [5] Perturbation methods for nonlinear autonomous discrete-time dynamical systems
    Luongo, A
    NONLINEAR DYNAMICS, 1996, 10 (04) : 317 - 331
  • [6] Dual Schur Method in Time for Nonlinear ODE
    Linel, P.
    Tromeur-Dervout, D.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 577 - 585
  • [7] Study of a ferroresonant circuit using analytic harmonic balance, numerical integration of nonlinear ODE and experimental methods
    Bardhi, Astrit
    Cipo, Piro
    Braneshi, Myrteza
    PROCEEDINGS OF 14TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (EPE-PEMC 2010), 2010,
  • [8] Resummation methods
    Goodson, David Z.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2012, 2 (05) : 743 - 761
  • [9] Comparison of numerical ODE solvers based on Euler methods
    Firat Univ, Elazig, Turkey
    Math Comput Appl, 3 (153-159):
  • [10] Evaluating numerical ODE/DAE methods, algorithms and software
    Söderlind, G
    Wang, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 185 (02) : 244 - 260