Numerical analysis of a reaction–diffusion susceptible–infected–susceptible epidemic model

被引:0
作者
X. Liu
Z. W. Yang
机构
[1] Liaocheng University,School of Mathematical Sciences
[2] Harbin Institute of Technology,School of Mathematics
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Reaction–diffusion SIS model; Numerical solution; Convergence; Long-time behaviors; 92-08; 65N22; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the numerical properties of a reaction–diffusion susceptible–infected–susceptible epidemic model. Comparing with existing literature, our numerical scheme gains advantage in terms of preserving the biological meanings (such as positivity or invariance of total population) unconditionally. An implicit–explicit technique is implemented in the time integration, which ensures the numerical positivity without CFL conditions while reducing the computation complexity. The solvability, convergence in finite time and the long-time behaviors of numerical solutions are investigated. A threshold value R0Δx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}^{\Delta x}$$\end{document} for the long-time dynamics of numerical solutions is proposed, which is named as a numerical basic reproduction number. It is proved that the numerical disease-free equilibrium is locally asymptotically stable if R0Δx<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}^{\Delta x}<1$$\end{document} and unstable if R0Δx>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}^{\Delta x}>1$$\end{document}. It is presented that R0Δx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}^{\Delta x}$$\end{document} shares the same monotonicity and limits as the basic reproduction number of the underlying model and converges to the exact one. Some numerical experiments are given in the end to confirm the conclusions and explore the stability of the endemic equilibrium.
引用
收藏
相关论文
共 51 条
[11]  
Mulet P(2017)Analysis on a diffusive SIS epidemic model with logistic source Z Angew Math Phys 68 68-96
[12]  
Villada LM(1983)Stability and asymptotic behaviour for the numerical solution of a reaction diffusion model for a deterministic diffusive epidemic IMA J Numer Anal 3 341-351
[13]  
Bürger R(2019)On the basic reproduction number of reaction–diffusion epidemic models SIAM J Appl Math 79 284-304
[14]  
Inzunza D(1974)A survey on M-matrices SIAM Rev 16 419-427
[15]  
Mulet P(2009)Global stability of the steady states of an SIS epidemic reaction–diffusion model Nonlinear Anal 71 239-247
[16]  
Villada LM(2012)A reaction–diffusion SIS epidemic model in a time-periodic environment Nonlinearity 25 1451-1471
[17]  
Chen S(2010)Alcohol consumption in Spain and its economic cost: a mathematical modeling approach Math Comput Model 52 999-1003
[18]  
Shi J(2012)Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion J Biol Dynam 6 406-439
[19]  
Deng K(1975)A lower bound for the smallest singular value of a matrix Linear Algorithm Appl 11 3-5
[20]  
Wu Y(2012)Basic reproduction numbers for reaction-diffusion epidemic models SIAM J Appl Dyn Syst 11 1652-1673