Numerical analysis of a reaction–diffusion susceptible–infected–susceptible epidemic model

被引:0
作者
X. Liu
Z. W. Yang
机构
[1] Liaocheng University,School of Mathematical Sciences
[2] Harbin Institute of Technology,School of Mathematics
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Reaction–diffusion SIS model; Numerical solution; Convergence; Long-time behaviors; 92-08; 65N22; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the numerical properties of a reaction–diffusion susceptible–infected–susceptible epidemic model. Comparing with existing literature, our numerical scheme gains advantage in terms of preserving the biological meanings (such as positivity or invariance of total population) unconditionally. An implicit–explicit technique is implemented in the time integration, which ensures the numerical positivity without CFL conditions while reducing the computation complexity. The solvability, convergence in finite time and the long-time behaviors of numerical solutions are investigated. A threshold value R0Δx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}^{\Delta x}$$\end{document} for the long-time dynamics of numerical solutions is proposed, which is named as a numerical basic reproduction number. It is proved that the numerical disease-free equilibrium is locally asymptotically stable if R0Δx<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}^{\Delta x}<1$$\end{document} and unstable if R0Δx>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}^{\Delta x}>1$$\end{document}. It is presented that R0Δx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}^{\Delta x}$$\end{document} shares the same monotonicity and limits as the basic reproduction number of the underlying model and converges to the exact one. Some numerical experiments are given in the end to confirm the conclusions and explore the stability of the endemic equilibrium.
引用
收藏
相关论文
共 51 条
[1]  
Allen LJS(2008)Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model Discrete Contin Dyn Syst 21 1-20
[2]  
Bolker BM(2015)Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems SIAM J Sci Comput 37 B305-B331
[3]  
Lou Y(2013)Regularized nonlinear solvers for IMEX methods applied to diffusively corrected multispecies kinematic flow models SIAM J Sci Comput 35 B751-B777
[4]  
Nevai AL(2019)Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour Appl Numer Math 144 234-252
[5]  
Boscarino S(2020)Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment SIAM J Appl Math 80 1247-1271
[6]  
Bürger R(2016)Dynamics of a susceptible-infected-susceptible epidemic reaction–diffusion model Proc R Soc Edinb A 146 929-946
[7]  
Mulet P(1983)The use of positive matrices for the analysis of the large time behavior of the numerical solution of reaction–diffusion systems Math Comput 41 461-472
[8]  
Russo G(1982)Decay to spatially homogeneous states for the numerical solution of reaction–diffusion systems Calcolo 19 193-208
[9]  
Villada LM(1978)Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations SIAM J Numer Anal 15 1161-1177
[10]  
Bürger R(2017)Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model J Differ Equ 262 885-913