Bounds for Average toward the Resonance Barrier for GL(3) × GL(2) Automorphic Forms

被引:0
作者
Huan Qin
Yang Bo Ye
机构
[1] San Diego State University—Imperial Valley,Department of Mathematics
[2] The University of Iowa,undefined
来源
Acta Mathematica Sinica, English Series | 2023年 / 39卷
关键词
Maass cusp form; holomorphic cusp form; Hypothesis S; resonance barrier; Kuznetsov trace formula; Petersson’s formula; Voronoi’s summation formula; 11F12; 11F30;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be a fixed Maass form for SL3 (ℤ) with Fourier coefficients Af(m, n). Let g be a Maass cusp form for SL2 (ℤ) with Laplace eigenvalue 14+k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 \over 4} + {k^2}$$\end{document} and Fourier coefficient λg(n), or a holomorphic cusp form of even weight k. Denote by SX(f × g, α, β) a smoothly weighted sum of Af(1, n)λg(n)e(αnβ) for X < n < 2X, where α ≠ 0 and β > 0 are fixed real numbers. The subject matter of the present paper is to prove non-trivial bounds for a sum of SX(f × g, α, β) over g as k tends to ∞ with X. These bounds for average provide insight for the corresponding resonance barriers toward the Hypothesis S as proposed by Iwaniec, Luo, and Sarnak.
引用
收藏
页码:1667 / 1683
页数:16
相关论文
共 42 条
  • [1] Czarnecki K(2016)Resonance sums for Rankin–Selberg products of SL J. Number Theory 163 359-374
  • [2] Ernvall–Hytönen A-M(2010)(ℤ) Maass cusp forms C. R. Math. Acad. Sci. Paris 348 5-8
  • [3] Ernvall–Hytönen A-M(2015)On certain exponential sums related to GL(3) cusp forms J. Number Theory 153 135-157
  • [4] Jääsaari J(1994)Resonances and Ω-results for exponential sums related to Maass forms for SL( Ann. of Math. 140 161-176
  • [5] Vesalainen E V(2001), ℤ) Inst. Hautes Études Sci. Publ. Math. 91 55-131
  • [6] Hoffstein J(2002)Coefficients of Maass forms and the Siegel zero Ann. of Math. 155 837-893
  • [7] Lockhart P(1981)Low lying zeros of families of Math. USSR–Sbornik 39 299-342
  • [8] Iwaniec H(2006)-functions J. Number Theory 121 204-223
  • [9] Luo W Z(2009)Functorial products for GL Geom. Funct. Anal. 18 1660-1695
  • [10] Sarnak P(2011) × GL Ann. of Math. 173 301-336