Derived Electron Densities from Linear Polarization Observations of the Visible-Light Corona During the 14 December 2020 Total Solar Eclipse

被引:0
作者
Liam Edwards
Kaine A. Bunting
Brad Ramsey
Matthew Gunn
Tomos Fearn
Thomas Knight
Gabriel Domingo Muro
Huw Morgan
机构
[1] Aberystwyth University,Department of Physics
[2] Aberystwyth University,Department of Computer Science
[3] California Institute of Technology,Space Radiation Lab
来源
Solar Physics | 2023年 / 298卷
关键词
Eclipse observations; Polarization; Optical; Instrumentation and data management; Spectrum; Visible;
D O I
暂无
中图分类号
学科分类号
摘要
A new instrument was designed to take visible-light (VL) polarized brightness (pB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{pB}$\end{document}) observations of the solar corona during the 14 December 2020 total solar eclipse. The instrument, called the Coronal Imaging Polarizer (CIP), consisted of a 16 MP CMOS detector, a linear polarizer housed within a piezoelectric rotation mount, and an f-5.6, 200 mm DSLR lens. Observations were successfully obtained, despite poor weather conditions, for five different exposure times (0.001 s, 0.01 s, 0.1 s, 1 s, and 3 s) at six different orientation angles of the linear polarizer (0∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0^{\circ}$\end{document}, 30∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$30^{\circ}$\end{document}, 60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$60^{\circ}$\end{document}, 90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$90^{\circ}$\end{document}, 120∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$120^{\circ}$\end{document}, and 150∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$150^{\circ}$\end{document}). The images were manually aligned using the drift of background stars in the sky and images of different exposure times were combined using a simple signal-to-noise ratio cut. The polarization and brightness of the local sky were also estimated and the observations were subsequently corrected. The pB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{pB}$\end{document} of the K-corona was determined using least-squares fitting and radiometric calibration was done relative to the Mauna Loa Solar Observatory (MLSO) K-Cor pB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{pB}$\end{document} observations from the day of the eclipse. The pB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{pB}$\end{document} data was then inverted to acquire the coronal electron density, ne\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_{e}$\end{document}, for an equatorial streamer and a polar coronal hole, which agreed very well with previous studies. The effect of changing the number of polarizer angles used to compute the pB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{pB}$\end{document} is also discussed and it is found that the results vary by up to ≈13%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 13\%$\end{document} when using all six polarizer angles versus only a select of three angles.
引用
收藏
相关论文
共 286 条
  • [1] Baumbach S.(1937)Strahlung, ergiebigkeit und elektronendichte der sonnenkorona Astron. Nachr. 263 121-undefined
  • [2] Bemporad A.(2020)Coronal electron densities derived with images acquired during the 2017 August 21 total solar eclipse Astrophys. J. 904 178-undefined
  • [3] Boe B.(2021)The color and brightness of the F-corona inferred from the 2019 July 2 total solar eclipse Astrophys. J. 912 44-undefined
  • [4] Habbal S.(2021)The double-bubble coronal mass ejection of the 2020 December 14 total solar eclipse Astrophys. J. Lett. 914 357-undefined
  • [5] Downs C.(1995)The Large Angle Spectroscopic Coronagraph (LASCO) Solar Phys. 162 145-undefined
  • [6] Druckmüller M.(2012)Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images Astrophys. J. 752 497-undefined
  • [7] Boe B.(1972)The F and K components of the solar corona Astrophys. J. 176 11-undefined
  • [8] Yamashiro B.(2009)Observing the roots of solar coronal heating – in the chromosphere Astrophys. J. Lett. 701 1-undefined
  • [9] Druckmüller M.(2023)Coronal densities, temperatures, and abundances during the 2019 total solar eclipse: the role of multiwavelength observations in coronal plasma characterization Astrophys. J. Suppl. 265 956-undefined
  • [10] Habbal S.(1995)The SOHO mission: an overview Solar Phys. 162 1605-undefined