On Estimates of the Boltzmann Collision Operator with Cut-off
被引:0
作者:
Roland Duduchava
论文数: 0引用数: 0
h-index: 0
机构:Academy of Sciences of Georgia,A. Razmadze Mathematical Institute
Roland Duduchava
Ralf Kirsch
论文数: 0引用数: 0
h-index: 0
机构:Academy of Sciences of Georgia,A. Razmadze Mathematical Institute
Ralf Kirsch
Sergej Rjasanow
论文数: 0引用数: 0
h-index: 0
机构:Academy of Sciences of Georgia,A. Razmadze Mathematical Institute
Sergej Rjasanow
机构:
[1] Academy of Sciences of Georgia,A. Razmadze Mathematical Institute
[2] University of Saarland,Department of Mathematics
来源:
Journal of Mathematical Fluid Mechanics
|
2006年
/
8卷
关键词:
46E35;
47J05;
47G20;
76P05;
82C40;
Boltzmann equation;
kinetic theory of gases;
integral operators;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We present new estimates of the Boltzmann collision operator in weighted Lebesgue and Bessel potential spaces. The main focus is put on hard potentials under the assumption that the angular part of the collision kernel fulfills some weighted integrability condition. In addition, the proofs for some previously known
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{L}_p $$\end{document} -estimates have been considerably shortened and carried out by elementary methods. For a class of metric spaces, the collision integral is seen to be a continuous operator into the same space.