Breit–Wigner Approximation and the Distribution¶of Resonances

被引:0
作者
Vesselin Petkov
Maciej Zworski
机构
[1] Département de Mathématiques Appliquées,
[2] Université de Bordeaux I,undefined
[3] 351,undefined
[4] Cours de la Libération,undefined
[5] ¶33405 Talence,undefined
[6] France. E-mail: petkov@math.u-bordeaux.fr,undefined
[7] Mathematics Department,undefined
[8] University of California,undefined
[9] Evans Hall,undefined
[10] Berkeley,undefined
[11] CA 94720,undefined
[12] USA.¶E-mail: zworski@math.berkeley.edu,undefined
来源
Communications in Mathematical Physics | 1999年 / 204卷
关键词
Real Axis; Half Plane; Discrete Spectrum; Harmonic Measure; Counting Function;
D O I
暂无
中图分类号
学科分类号
摘要
For operators with a discrete spectrum, {λj2}, the counting function of λj's, N (λ), trivially satisfies N ( λ+δ ) −N ( λ−δ ) =∑jδλj((λ−δ,λ+δ]). In scattering situations the natural analogue of the discrete spectrum is given by resonances, λj∈ℂ+, and of N (λ), by the scattering phase, s(λ). The relation between the two is now non-trivial and we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where ωℂ+ is the harmonic measure of the upper of half plane and δ can be taken dependent on λ. This provides a precise high energy version of the Breit–Wigner approximation, and relates the properties of s (λ) to the distribution of resonances close to the real axis.
引用
收藏
页码:329 / 351
页数:22
相关论文
empty
未找到相关数据