Breit–Wigner Approximation and the Distribution¶of Resonances

被引:0
|
作者
Vesselin Petkov
Maciej Zworski
机构
[1] Département de Mathématiques Appliquées,
[2] Université de Bordeaux I,undefined
[3] 351,undefined
[4] Cours de la Libération,undefined
[5] ¶33405 Talence,undefined
[6] France. E-mail: petkov@math.u-bordeaux.fr,undefined
[7] Mathematics Department,undefined
[8] University of California,undefined
[9] Evans Hall,undefined
[10] Berkeley,undefined
[11] CA 94720,undefined
[12] USA.¶E-mail: zworski@math.berkeley.edu,undefined
来源
Communications in Mathematical Physics | 1999年 / 204卷
关键词
Real Axis; Half Plane; Discrete Spectrum; Harmonic Measure; Counting Function;
D O I
暂无
中图分类号
学科分类号
摘要
For operators with a discrete spectrum, {λj2}, the counting function of λj's, N (λ), trivially satisfies N ( λ+δ ) −N ( λ−δ ) =∑jδλj((λ−δ,λ+δ]). In scattering situations the natural analogue of the discrete spectrum is given by resonances, λj∈ℂ+, and of N (λ), by the scattering phase, s(λ). The relation between the two is now non-trivial and we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where ωℂ+ is the harmonic measure of the upper of half plane and δ can be taken dependent on λ. This provides a precise high energy version of the Breit–Wigner approximation, and relates the properties of s (λ) to the distribution of resonances close to the real axis.
引用
收藏
页码:329 / 351
页数:22
相关论文
共 50 条
  • [1] Breit-Wigner approximation and the distribution of resonances
    Petkov, V
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (02) : 329 - 351
  • [2] Nearby resonances beyond the Breit-Wigner approximation
    Cacciapaglia, Giacomo
    Deandrea, Aldo
    De Curtis, Stefania
    PHYSICS LETTERS B, 2009, 682 (01) : 43 - 49
  • [3] Breit-Wigner approximation and the distribution of resonances (vol 204, pg 329, 1999)
    Petkov, V
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (03) : 733 - 735
  • [4] BREIT-WIGNER RESONANCES IN CHEMISTRY
    PONOMAREV, OA
    PONOMAREVA, VA
    TEORETICHESKAYA I EKSPERIMENTALNAYA KHIMIYA, 1990, 26 (04): : 422 - 430
  • [5] EIGENPHASES AND GENERALIZED BREIT-WIGNER APPROXIMATION
    GOEBEL, CJ
    MCVOY, KW
    PHYSICAL REVIEW, 1967, 164 (05): : 1932 - &
  • [6] EFFECT OF BREIT-WIGNER RESONANCES IN CHEMICAL REACTION
    BLUM, L
    JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (04): : 1972 - &
  • [7] Resolving Mechanical Resonances with Breit-Wigner Formula
    Garcia-Berrocal, A.
    Blazquez, J.
    Montalvo, C.
    Balbas, M.
    JOURNAL OF VIBRATION AND CONTROL, 2009, 15 (08) : 1267 - 1280
  • [8] Scalar resonances: Chiral Breit-Wigner expressions
    Arantes, LO
    Robilotta, MR
    PHYSICAL REVIEW D, 2006, 73 (03):
  • [9] Breit-Wigner resonances and nucleon propertiesin the resonance region
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 3 (355):
  • [10] BREIT-WIGNER-FANO RESONANCES IN THE PHOTOCONDUCTIVITY OF SEMICONDUCTORS - THEORY
    CHANG, YC
    MCGILL, TC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 362 - 362