Entropy stable h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier-Stokes equations

被引:16
作者
Fernandez, David C. Del Rey [1 ,2 ]
Carpenter, Mark H. [3 ]
Dalcin, Lisandro [4 ]
Zampini, Stefano [4 ]
Parsani, Matteo [4 ]
机构
[1] NASA Langley Res Ctr, Natl Inst Aerosp, Hampton, VA USA
[2] NASA Langley Res Ctr, Computat Aerosci Branch, Hampton, VA USA
[3] NASA Langley Res Ctr, Hampton, VA USA
[4] King Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal, Saudi Arabia
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2020年 / 1卷 / 02期
关键词
Nonconforming interfaces; h/p adaptation; Nonlinear entropy stability; Summation-by-parts; Simultaneous-approximation-terms; High-order accurate discretizations; Curved elements; Unstructured grid; DISCONTINUOUS GALERKIN SCHEMES; NONLINEAR CONSERVATION-LAWS; FINITE-DIFFERENCE SCHEMES; BOUNDARY-CONDITIONS; ORDER; STABILITY; FORMULATIONS; ALGORITHMS; SIMULATION; SYSTEMS;
D O I
10.1007/s42985-020-00009-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the entropy conservative/stable algorithms presented by Del Rey Fern & aacute;ndez et al. (2019) for the compressible Euler and Navier-Stokes equations on nonconforming p-refined/coarsened curvilinear grids to h/p refinement/coarsening. The main difficulty in developing nonconforming algorithms is the construction of appropriate coupling procedures across nonconforming interfaces. Here, we utilize a computationally simple and efficient approach based upon using decoupled interpolation operators. The resulting scheme is entropy conservative/stable and element-wise conservative. Numerical simulations of the isentropic vortex and viscous shock propagation confirm the entropy conservation/stability and accuracy properties of the method (achieving similar to p+1 convergence), which are comparable to those of the original conforming scheme (Carpenter et al. in SIAM J Sci Comput 36(5):B835-B867, 2014; Parsani et al. in SIAM J Sci Comput 38(5):A3129-A3162, 2016). Simulations of the Taylor-Green vortex at Re = 1600 and turbulent flow past a sphere at Re-infinity = 2000 show the robustness and stability properties of the overall spatial discretization for unstructured grids. Finally, to demonstrate the entropy conservation property of a fully-discrete explicit entropy stable algorithm with h/p refinement/coarsening, we present the time evolution of the entropy function obtained by simulating the propagation of the isentropic vortex using a relaxation Runge-Kutta scheme.
引用
收藏
页数:54
相关论文
共 64 条
  • [1] Abhyankar S, 2018, Arxiv, DOI arXiv:1806.01437
  • [2] Altmann C., 2013, An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Element Method, P37
  • [3] Balay S., 2021, PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.11
  • [4] p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES
    Burstedde, Carsten
    Wilcox, Lucas C.
    Ghattas, Omar
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03) : 1103 - 1133
  • [5] Carpenter MH, 2016, HANDB NUM ANAL, V17, P495, DOI 10.1016/bs.hna.2016.09.014
  • [6] Carpenter M.H., 2016, 54 AIAA AER SCI M
  • [7] Carpenter M.H., 2015, NASA TM-2015-218990
  • [8] ENTROPY STABLE SPECTRAL COLLOCATION SCHEMES FOR THE NAVIER-STOKES EQUATIONS: DISCONTINUOUS INTERFACES
    Carpenter, Mark H.
    Fisher, Travis C.
    Nielsen, Eric J.
    Frankel, Steven H.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05) : B835 - B867
  • [9] Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators
    Carpenter, Mark H.
    Nordstrom, Jan
    Gottlieb, David
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) : 118 - 150
  • [10] TIME-STABLE BOUNDARY-CONDITIONS FOR FINITE-DIFFERENCE SCHEMES SOLVING HYPERBOLIC SYSTEMS - METHODOLOGY AND APPLICATION TO HIGH-ORDER COMPACT SCHEMES
    CARPENTER, MH
    GOTTLIEB, D
    ABARBANEL, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (02) : 220 - 236