Reducibility of Quantum Representations of Mapping Class Groups

被引:0
作者
Jørgen Ellegaard Andersen
Jens Fjelstad
机构
[1] University of Aarhus,Center for Quantum Geometry of Moduli Spaces
[2] Karlstad University,Department of Physics
来源
Letters in Mathematical Physics | 2010年 / 91卷
关键词
57R56; topological quantum field theory; mapping class group; quantum representation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we provide a general condition for the reducibility of the Reshetikhin–Turaev quantum representations of the mapping class groups. Namely, for any modular tensor category with a special symmetric Frobenius algebra with a non-trivial genus one partition function, we prove that the quantum representations of all the mapping class groups built from the modular tensor category are reducible. In particular, for SU(N) we get reducibility for certain levels and ranks. For the quantum SU(2) Reshetikhin–Turaev theory we construct a decomposition for all even levels. We conjecture this decomposition is a complete decomposition into irreducible representations for high enough levels.
引用
收藏
页码:215 / 239
页数:24
相关论文
共 74 条
[1]  
Andersen J.E.(1999)Involutions on moduli spaces and refinements of the Verlinde formula Math. Ann. 314 291-326
[2]  
Masbaum G.(2006)Asymptotic faithfulness of the quantum SU( Ann. Math. 163 347-368
[3]  
Andersen J.E.(1989)) representations of the mapping class groups Inst. Hautes Etudes Sci. Publ. Math. 68 175-186
[4]  
Atiyah M.(1991)Topological quantum field theories J. Differ. Geom. 33 787-902
[5]  
Axelrod S.(2003)Geometric quantization of Chern Simons gauge theory Commun. Math. Phys. 233 423-438
[6]  
Della Pietra S.(1992)The kernel of the modular representation and the Galois action in RCFT Topology 31 685-699
[7]  
Witten E.(1995)Three-manifold invariants derived from the Kauffman Bracket Topology 34 883-927
[8]  
Bantay P.(2005)Topological quantum field theories derived from the Kauffman bracket Commun. Math. Phys. 257 1-28
[9]  
Blanchet C.(1999)A spin decomposition of the Verlinde formulas for type a modular categories Math. Phys. 200 57-103
[10]  
Habegger N.(1999)Modular invariants, graphs and alpha-induction for nets of subfactors. II. Commun Commun. Math. Phys. 205 183-228