Detection of downy and powdery mildew resistance QTL in a ‘Regent’ × ‘RedGlobe’ population

被引:0
|
作者
Carel J. van Heerden
Phyllis Burger
Abraham Vermeulen
Renée Prins
机构
[1] Stellenbosch University,Department of Genetics
[2] ARC Infruitec-Nietvoorbij,undefined
[3] CenGen (Pty) Ltd & University of Free State,undefined
来源
Euphytica | 2014年 / 200卷
关键词
Genetic mapping; QTL mapping; Grapevine; Pathogen;
D O I
暂无
中图分类号
学科分类号
摘要
One hundred and eighty six F1 plants from a ‘Regent’ × ‘RedGlobe’ cross were used to generate a partial linkage map with 139 microsatellite markers spanning all 19 chromosomes. Phenotypic scores for downy mildew, taken over two years, confirmed a major resistance QTL (Rpv3) against downy mildew in the interval VVIN16-cjvh to UDV108 on chromosome 18 of ‘Regent’. This locus explained up to 62 % of the phenotypic variance observed. Additionally a putative minor downy mildew resistance locus was observed on chromosome 1 in one season. A major resistance locus against powdery mildew (Ren3) was also identified on chromosome 15 of ‘Regent’ in the interval UDV116 to VChr15CenGen06. This study established the efficacy of and validated the ‘Regent’-derived downy and powdery mildew major resistance genes/QTL under South African conditions. Closely linked SSR markers for marker-assisted selection and gene pyramiding strategies were identified.
引用
收藏
页码:281 / 295
页数:14
相关论文
共 50 条
  • [21] QTL identification for downy mildew resistance in cucumber using genetic linkage map based on SSR markers
    PAWINEE INNARK
    HADSAYA PANYANITIKOON
    CHANULAK KHANOBDEE
    SOMPID SAMIPAK
    CHATCHAWAN JANTASURIYARAT
    Journal of Genetics, 2020, 99
  • [22] A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat
    Chantret, N
    Mingeot, D
    Sourdille, P
    Bernard, M
    Jacquemin, JM
    Doussinault, G
    THEORETICAL AND APPLIED GENETICS, 2001, 103 (6-7) : 962 - 971
  • [23] A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat
    N. Chantret
    D. Mingeot
    P. Sourdille
    M. Bernard
    J. M. Jacquemin
    G. Doussinault
    Theoretical and Applied Genetics, 2001, 103 : 962 - 971
  • [24] Quantitative Trait Loci Mapping for Powdery Mildew Resistance in Wheat Genetic Population
    Zhao, Zhiyong
    Qiu, Yuliang
    Cao, Menglin
    Bi, Hongyuan
    Si, Guan
    Meng, Xianghai
    GENES, 2024, 15 (11)
  • [25] Mapping of QTL affecting resistance against sorghum downy mildew (Peronosclerospora sorghi) in maize (Zea mays L)
    Jampatong, Chaba
    Jampatong, Sansern
    Jompuk, Choosak
    Sreewongchai, Tanee
    Grudloyma, Pichet
    Balla, Chatpong
    Prodmatee, Nathinee
    MAYDICA, 2013, 58 (1-4): : 119 - 126
  • [26] SUSCEPTIBILITY TO DOWNY MILDEW (PLASMOPARA VITICOLA) AND POWDERY MILDEW (ERYSIPHE NECATOR) OF DIFFERENT VITIS CULTIVARS AND GENOTYPES
    Atak, Arif
    Akkurt, M.
    Polat, Z.
    Celik, H.
    Kahraman, K. A.
    Akgul, D. S.
    Ozer, N.
    Soylemezoglu, G.
    Sire, G.
    Eibach, R.
    CIENCIA E TECNICA VITIVINICOLA, 2017, 32 (01): : 23 - 32
  • [27] Resistance to Rust and Powdery Mildew in Lathyrus Crops
    Vaz Patto, Maria Carlota
    Rubiales, Diego
    CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2014, 50 (02) : 116 - 122
  • [28] Resistance to powdery mildew in a doubled haploid barley population and its association with marker loci
    Falak, I
    Falk, DE
    Tinker, NA
    Mather, DE
    EUPHYTICA, 1999, 107 (03) : 185 - 192
  • [29] QTL Mapping of Downy Mildew Resistance in an Introgression Line Derived from Interspecific Hybridization Between Cucumber and Cucumis hystrix
    Pang, Xin
    Zhou, Xiaohui
    Wan, Hongjian
    Chen, Jinfeng
    JOURNAL OF PHYTOPATHOLOGY, 2013, 161 (7-8) : 536 - 543
  • [30] Resistance to powdery mildew in a doubled haploid barley population and its association with marker loci
    I. Falak
    D.E. Falk
    N.A. Tinker
    D.E. Mather
    Euphytica, 1999, 107 : 185 - 192