Tensor products of complementary series of rank one Lie groups

被引:0
作者
GenKai Zhang
机构
[1] Chalmers University of Technology,Mathematical Sciences
[2] Göteborg University,Mathematical Sciences
来源
Science China Mathematics | 2017年 / 60卷
关键词
semisimple Lie groups; unitary representations; tensor products; complementary series; intertwining operators; 22E45; 43A80; 43A85;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the tensor product πα ⊗ πβ of complementary series representations πα and πβ of classical rank one groups SO0(n; 1), SU(n; 1) and Sp(n; 1). We prove that there is a discrete component πα+β for small parameters α and β (in our parametrization). We prove further that for SO0(n; 1) there are finitely many complementary series of the form πα+β+2j, j = 0, 1,..., k, appearing in the tensor product πα ⊗ πβ of two complementary series πα and πβ where k = k(α, β n) depends on α, β and n.
引用
收藏
页码:2337 / 2348
页数:11
相关论文
共 42 条
[1]  
Asmuth C(1981)Tensor products for Pacific J Math 97 271-282
[2]  
Repka J(2014)(K), I: Complementary series and the special representation Internat J Math 25 1450017-257
[3]  
Ben S S(1992)Invariant trilinear forms on spherical principal series of real-rank one semisimple Lie groups Bull Amer Math Soc (NS) 26 253-431
[4]  
Koufany K(2011)Ramanujan duals and automorphic spectrum Math Ann 349 395-130
[5]  
Zhang G(2004)Generalized Bernstein-Reznikov integrals Mosc Math J 4 111-237
[6]  
Burger M(1998)Rankin-Cohen brackets and the Hopf algebra of transverse geometry J Geom Anal 8 199-139
[7]  
Li J-S(1997)An approach to symmetric spaces of rank one via groups of Heisenberg type J Funct Anal 147 109-89
[8]  
Sarnak P(1990)Canonical representations related to hyperbolic spaces J Funct Anal 88 64-173
[9]  
Clerc J-L(1977)Function spaces and reproducing kernels on bounded symmetric domains Trans Amer Math Soc 229 137-338
[10]  
Kobayashi T(2015)Composition series and intertwining operators for the spherical principal series. I J Math Sci Univ Tokyo 22 279-216