Geological Fractures Detection by Methods of Machine Learning

被引:0
作者
M. V. Muratov
V. A. Biryukov
I. B. Petrov
机构
[1] Moscow institute of Physics and Technology,
来源
Lobachevskii Journal of Mathematics | 2020年 / 41卷
关键词
machine learning; neural network; mathematical modeling; grid-characteristic method; exploration seismology; fractured media; inverse problems;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:533 / 537
页数:4
相关论文
共 17 条
[1]  
Araya-Polo M.(2017)Automated fault detection without seismic processing Leading Eadge 36 194-280
[2]  
Dahlke T.(2017)Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks Neurocomputing 257 128-135
[3]  
Frogner C.(2019)The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article) Matem. Mod. 31 33-56
[4]  
Zhang C.(2018)Parallel implementation of the grid-characteristic method in the case of explicit contact boundariesm Comput. Res. Model. 10 667-678
[5]  
Poggio T.(2017)Numerical simulation of fracturing in geological medium Proc. Comput. Sci. 112 1216-1224
[6]  
Hohl D.(undefined)undefined undefined undefined undefined-undefined
[7]  
Menga M.(undefined)undefined undefined undefined undefined-undefined
[8]  
Chua Y. J.(undefined)undefined undefined undefined undefined-undefined
[9]  
Woutersonb E.(undefined)undefined undefined undefined undefined-undefined
[10]  
Ong C. P. K.(undefined)undefined undefined undefined undefined-undefined