Stability and Hopf bifurcation of a delayed-diffusive predator–prey model with hyperbolic mortality and nonlinear prey harvesting

被引:0
|
作者
Fengrong Zhang
Yan Li
机构
[1] China University of Petroleum,Department of Mathematics
来源
Nonlinear Dynamics | 2017年 / 88卷
关键词
Predator–prey model; Delay; Reaction–diffusion; Stability; Hopf bifurcation; 34C23; 35B32; 35B35; 92D40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a delayed-diffusive predator–prey model with hyperbolic mortality and nonlinear prey harvesting subject to the homogeneous Neumann boundary conditions is investigated. Firstly, the global asymptotic stability of the unique positive constant equilibrium is obtained by an iteration technique. Secondly, regarding time delay as a bifurcation parameter and using the normal form theory and center manifold theorem, the existence, stability and direction of bifurcating periodic solutions are demonstrated, respectively. Finally, numerical simulations are conducted to illustrate the theoretical analysis.
引用
收藏
页码:1397 / 1412
页数:15
相关论文
共 50 条
  • [1] Stability and Hopf bifurcation of a delayed-diffusive predator-prey model with hyperbolic mortality and nonlinear prey harvesting
    Zhang, Fengrong
    Li, Yan
    NONLINEAR DYNAMICS, 2017, 88 (02) : 1397 - 1412
  • [2] Global stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality and prey harvesting
    Li, Yan
    Li, Sanyun
    Zhao, Jingfu
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (05): : 646 - 661
  • [3] Stability and Hopf Bifurcation of a Diffusive Predator-Prey Model with Hyperbolic Mortality
    Sambath, Muniyagounder
    Balachandran, Krishnan
    Suvinthra, Murugan
    COMPLEXITY, 2016, 21 (S1) : 34 - 43
  • [4] HOPF BIFURCATION AND CONTROL FOR THE DELAYED PREDATOR-PREY MODEL WITH NONLINEAR PREY HARVESTING
    Zhang, Guodong
    Guo, Huangyu
    Han, Jing
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2954 - 2976
  • [5] HOPF BIFURCATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH HERD BEHAVIOR AND PREY HARVESTING
    Jiang, Heping
    Tang, Xiaosong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (02): : 671 - 690
  • [6] Hopf bifurcation and global stability of a delayed predator-prey model with prey harvesting
    Li, Yan
    Wang, Mingxin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (05) : 398 - 410
  • [7] Global Hopf bifurcation of a delayed diffusive predator-prey model with Michaelis-Menten-type prey harvesting
    Yuan, Rui
    Wang, Zhen
    Jiang, Weihua
    APPLICABLE ANALYSIS, 2016, 95 (02) : 444 - 466
  • [8] Hopf bifurcation of a delayed diffusive predator-prey model with strong Allee effect
    Jia Liu
    Xuebing Zhang
    Advances in Difference Equations, 2017
  • [9] DELAY INDUCED SUBCRITICAL HOPF BIFURCATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH HERD BEHAVIOR AND HYPERBOLIC MORTALITY
    Tang, Xiaosong
    Jiang, Heping
    Deng, Zhiyun
    Yu, Tao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (04): : 1385 - 1401
  • [10] Hopf bifurcation of a delayed diffusive predator-prey model with strong Allee effect
    Liu, Jia
    Zhang, Xuebing
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,