Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion

被引:0
作者
Xinwen Zhang
Dehao Ruan
机构
[1] Guangzhou College of Commerce,Department of Mathematics
[2] Guangzhou University,Department of Probability and Statistics, School of Mathematics and Information Science
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Neutral stochastic functional partial differential equation; Mild solution; Exponential stability; Brownian motion; Fractional Brownian motion; 34k40; 35B35; 47D03; 60H15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the exponential stability in the pth moment of mild solutions to neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion: d[x(t)+g(t,xt)]=[Ax(t)+f(t,xt)]dt+h(t,xt)dW(t)+σ(t)dBH(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d \bigl[x(t)+g(t,x_{t}) \bigr]= \bigl[Ax(t)+f(t,x_{t}) \bigr] \,dt+h(t,x_{t})\,dW(t)+\sigma(t)\,dB^{H}(t), $$\end{document} where H∈(1/2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H\in(1/2,1)$\end{document}. Our method for investigating the stability of solutions is based on the Banach fixed point theorem. The obtained results generalize and improve the results due to Boufoussi and Hajji (Stat. Probab. Lett. 82:1549–1558, 2012), Caraballo et al. (Nonlinear Anal. 74:3671–3684, 2011), and Luo (J. Math. Anal. Appl. 355:414–425, 2009).
引用
收藏
相关论文
共 37 条
[1]  
Boufoussi B.(2011)Functional differential equations driven by a fractional Brownian motion Comput. Math. Appl. 62 746-754
[2]  
Hajji S.(2012)Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space Stat. Probab. Lett. 82 1549-1558
[3]  
Boufoussi B.(2014)Peng’s maximum principle for a stochastic control problem driven by a fractional and a standard Brownian motion Sci. China Math. 57 2025-2042
[4]  
Hajji S.(2014)Asymptotic behavior of neutral stochastic partial functional integro-differential equations driven by a fractional Brownian motion J. Nonlinear Sci. Appl. 7 407-421
[5]  
Buckdahn K.(2011)The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion Nonlinear Anal. 74 3671-3684
[6]  
Jing S.(2014)A note on exponential stability for impulsive neutral stochastic partial functional differential equations Appl. Math. Comput. 227 139-147
[7]  
Caraballo T.(2001)Mixed fractional Brownian motion Bernoulli 7 913-934
[8]  
Diop M.A.(2005)Almost sure exponential stability for stochastic neutral partial functional differential equations Stochastics 77 139-154
[9]  
Ndiaye A.A.(2008)Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion Stoch. Anal. Appl. 26 1053-1075
[10]  
Caraballo T.(2015)Global attractiveness and quasi-invariant sets of impulsive neutral stochastic functional differential equations driven by fBm Neurocomputing 177 620-627