A class of 1-generator repeated root quasi-cyclic codes

被引:0
|
作者
Yonglin Cao
机构
[1] Shandong University of Technology,School of Sciences
来源
关键词
1-Generator repeated root quasi-cyclic code; Finite commutative chain ring; Parity check polynomial; Group of units; 94B05; 11T71; 11T55; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} be a power of a prime integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p, m=p^em_0$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|q|_{m_{0}}$$\end{document} the order of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} modulo \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0$$\end{document}. By use of finite commutative chain ring theory, an algorithm to construct all distinct 1-generator quasi-cyclic codes with a fixed parity check polynomial over a finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q$$\end{document} of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mn$$\end{document} and index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, under the condition that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {gcd}(|q|_{m_0},n)=1$$\end{document}, are given.
引用
收藏
页码:483 / 496
页数:13
相关论文
共 50 条
  • [1] A class of 1-generator repeated root quasi-cyclic codes
    Cao, Yonglin
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (03) : 483 - 496
  • [2] A class of 1-generator quasi-cyclic codes
    Séguin, GE
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1745 - 1753
  • [3] 1-generator quasi-cyclic codes
    Pei, Junying
    Zhang, Xuejun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2007, 20 (04) : 554 - 561
  • [4] 1-Generator Quasi-Cyclic Codes
    Junying Pei
    Xuejun Zhang
    Journal of Systems Science and Complexity, 2007, 20 : 554 - 561
  • [5] Quaternary 1-generator quasi-cyclic codes
    Jie Cui
    Junying Pei
    Designs, Codes and Cryptography, 2011, 58 : 23 - 33
  • [6] Quaternary 1-generator quasi-cyclic codes
    Cui, Jie
    Pei, Junying
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 58 (01) : 23 - 33
  • [7] 1-Generator quasi-cyclic and generalized quasi-cyclic codes over the ring
    Gao, Yun
    Gao, Jian
    Wu, Tingting
    Fu, Fang-Wei
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2017, 28 (06) : 457 - 467
  • [8] A class of 1-generator quasi-cyclic codes over finite chain rings
    Gao, Jian
    Shen, Linzhi
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (01) : 40 - 54
  • [9] A minimum distance bound for 1-Generator quasi-cyclic codes
    Woungang, Isaac
    Misra, Sudip
    Sadeahian, Alireza
    Ferworn, Alexander
    2007 10TH CANADIAN WORKSHOP ON INFORMATION THEORY, 2007, : 156 - 159
  • [10] Structural properties and enumeration of 1-generator generalized quasi-cyclic codes
    Cao, Yonglin
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 60 (01) : 67 - 79