Kloosterman sums with multiplicative coefficients

被引:0
作者
Ke Gong
ChaoHua Jia
机构
[1] Henan University,Department of Mathematics
[2] Chinese Academy of Sciences,Institute of Mathematics, Academy of Mathematics and Systems Science
[3] Chinese Academy of Sciences,Hua Loo
来源
Science China Mathematics | 2016年 / 59卷
关键词
Kloosterman sum; multiplicative function; finite version of Vinogradov’s inequality; 11L05; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(n) be a multiplicative function satisfying |f(n)| ≤ 1, q (≤ N2) be a positive integer and a be an integer with (a, q) = 1. In this paper, we shall prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum\limits_{n \leqslant N(n,q) = 1} {f(n)e\left( {\frac{{a\bar n}} {q}} \right) \ll \sqrt {\frac{{\tau (q)}} {q}} N\log \log (6N) + q\tfrac{1} {4} + \tfrac{\varepsilon } {2}N\tfrac{1} {2}(\log (6N))\tfrac{1} {2} + \frac{N} {{\log \log (6N)}},} $\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline n $\end{document} is the multiplicative inverse of {itn} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline n n$\end{document} ≡ 1 (mod {itq}), {ite}({itx}) = exp(2πi{itx}), and τ(·) is the divisor function.
引用
收藏
页码:653 / 660
页数:7
相关论文
共 16 条
[1]  
Baker R C(2012)Kloosterman sums with prime variable Acta Arith 156 351-372
[2]  
Bourgain J(2014)Sumsets of reciprocals in prime fields and multilinear Kloosterman sums Izv Math 78 656-707
[3]  
Garaev M Z(1999)On Kloosterman sums with oscillating coefficients Canad Math Bull 42 285-290
[4]  
Deng P(2014)Algebraic trace functions over the primes Duke Math J 163 1683-1736
[5]  
Fouvry E(1998)Sur certaines sommes d’exponentielles sur les nombres premiers Ann Sci École Norm Sup 31 93-130
[6]  
Kowalski P(2011)On a ternary quadratic form over primes Acta Arith 150 285-314
[7]  
Michel P(1988)On Kloosterman sums with oscillating coefficients Canad Math Bull 31 32-36
[8]  
Fouvry I E(1998)Kloosterman sums with oscillating coefficients (in Chinese) Chinese Ann Math 19 237-242
[9]  
Michel D(undefined)undefined undefined undefined undefined-undefined
[10]  
Fouvry A(undefined)undefined undefined undefined undefined-undefined