Enhanced diffusion and interdiffusion in HgCdTe from fermi-level effects

被引:0
作者
H. G. Robinson
M. A. Berding
W. J. Hamilton
K. Kosai
T. DeLyon
W. B. Johnson
B. J. Walker
机构
[1] SRI International,Laboratory for Physical Sciences
[2] Raytheon IR Center of Excellence,undefined
[3] Hughes Research Laboratories,undefined
[4] University of Maryland,undefined
来源
Journal of Electronic Materials | 2000年 / 29卷
关键词
Interdiffusion; indium diffusion; Fermi-level effect; LWIR; MWIR; and SWIR HgCdTe; mutispectral infrared detectors; point defects; process simulation;
D O I
暂无
中图分类号
学科分类号
摘要
Excessive dopant or compositional mixing (interdiffusion) during the processing of HgCdTe photodiodes can lead to significant reductions in device performance. With the advent of multi-color and wider bandgap detectors, processes developed for single color LWIR and MWIR devices may not be transferable to the more complex structures. An important factor to account for in processing multicolor and wider gap HgCdTe is the effect of the Fermi level on point defect (PD) concentrations. In general, the density of PDs that have donor states in the band gap will be boosted in the presence of acceptors through the energy gained by the donor state electrons dropping into the vacant acceptor states. The density of PDs that have acceptor states in the band gap will be boosted in the presence of donors through a similar compensation mechanism. This Fermi-level effect is increasingly more important as the band gap is widened. Since almost all diffusion is mediated by either native and/or dopant point defects, and the intrinsic carrier concentration is relatively low at typical processing temperatures, significant broadening of composition and dopant profiles can occur in moderately and heavily doped HgCdTe. In this paper, we illustrate the Fermi-level effect on diffusion with two examples: compositional interdiffusion in multicolor detectors and diffusion of indium in MWIR and SWIR detectors.
引用
收藏
页码:657 / 663
页数:6
相关论文
共 60 条
  • [1] Leute V.(1981)undefined Phys. Stat. Sol. A 67 183-183
  • [2] Schmidke H.M.(1987)undefined Appl. Phys. Lett. 50 1272-1272
  • [3] Stratmann W.(1989)undefined J. Vac. Sci. and Technol. B 7 544-544
  • [4] Winking W.(1986)undefined J. Vac. Sci. Technol. A 4 2106-2106
  • [5] Tang M.-F.(1986)undefined J. Electron. Mater. 15 103-103
  • [6] Stevenson D.A.(1998)undefined J. Electron. Mater. 27 672-672
  • [7] Tang M.-S.(1985)undefined J. Vac. Sci. Technol. A 1 238-238
  • [8] Stevenson D.A.(1981)undefined Appl. Phys. Lett. 38 776-776
  • [9] Zanio K.(1984)undefined J. Electron. Mater. 13 147-147
  • [10] Zanio K.(1988)undefined Mater. Res. Soc. Symp. Proc. 104 605-605